Correlation functions of the cyclic SOS model from algebraic Bethe Ansatz Thermodynamic limit

Damien LEVY-BENCHETON

ENS Lyon, France

CFIM-13 - Dijon

Collaborator: Véronique TERRAS (CNRS \& ENS Lyon). Articles:
D. L., V. Terras, arXiv:1212.0246 (2012), J. Stat. Mech. (2013) P04015,
D. L., V. Terras, arXiv:1304.7814 (2013),
D. L., V. Terras, "Multi-point Local height probabilities of the cyclic SOS model", to appear.

Computation of correlation functions within ABA

For $\left|\psi_{g}\right\rangle$ a ground state of the cyclic SOS model for which $\eta=\frac{r}{L}$,

$$
\left\langle\psi_{g}\right| \mathcal{O}\left|\psi_{g}\right\rangle \quad \mathcal{O}=\delta_{\mathbf{s}}, \sigma_{m}^{z}, \delta_{\mathbf{s}} E_{1}^{\alpha_{1} \alpha_{1}} \ldots E_{m}^{\alpha_{m} \alpha_{m}}, \ldots
$$

(1) Diagonalization achieved by ABA Felder, Varchenko (1996) :

$$
|\{u\}, \omega\rangle: s \mapsto \varphi(s) B\left(u_{1} ; s\right) B\left(u_{2} ; s-1\right) \ldots B\left(u_{n} ; s-n+1\right)|0\rangle \in \operatorname{Fun}(\mathcal{H}[0])
$$

for which $\varphi(s)=\omega^{s} \prod_{j=1}^{n} \frac{[1]}{[s-j]}$ and with $\left\{u_{1}, \ldots, u_{n}\right\}$, solution of

$$
a\left(u_{j}\right) \prod_{l \neq j} \frac{\left[u_{l}-u_{j}+1\right]}{\left[u_{l}-u_{j}\right]}=(-1)^{r k} \omega^{-2} d\left(u_{j}\right) \prod_{l \neq j} \frac{\left[u_{j}-u_{l}+1\right]}{\left[u_{j}-u_{l}\right]}, \quad j=1, \ldots n,
$$

with $N=2 n+k L(k \in \mathbb{Z})$ and $\omega^{L}=(-1)^{r n}($ for $\eta=r / L)$.
(2) To characterize $\left|\psi_{g}\right\rangle \rightsquigarrow$ this talk
(3) Quantum inverse problem solved similarly as for the XXZ spins chain
(9) Single determinant representation for the scalar product between a Bethe eigenstate and a Bethe arbitrary state (in particular for the norm, and for the form factors)
\rightsquigarrow partial scalar product expressed as a sum of L terms because of the dynamical parameter
(5) To take the thermodynamic limit $(N \rightarrow \infty) \rightsquigarrow$ this talk

Ground states and thermodynamic limit

Ground states:

It is more convenient to work with conjugate periods $\tilde{\eta}=-\frac{\eta}{\tau}, \tilde{\tau}=-\frac{1}{\tau}$

- Jacobi's imaginary transformation: $[u] \propto e^{i \pi \eta \tilde{\eta} u^{2}} \theta_{1}(x=\tilde{\eta} u ; \tilde{\tau})$
- Logarithmic Bethe ansatz equations for $\left(\left\{x_{j}\right\}_{1 \leq j \leq n}, \omega_{x}=\exp \left(i \pi \frac{r n+2 \ell_{x}}{L}\right)\right)$:

$$
N p_{0}\left(x_{j}\right)-\sum_{l=1}^{n} \vartheta\left(x_{j}-x_{l}\right)=2 \pi\left(n_{j}-\frac{n+1}{2}+\frac{r n+2 \ell_{x}}{L}+2 \eta \sum_{l=1}^{n} x_{l}\right), 1 \leq j \leq n
$$

with $p_{0}(z)=i \log \frac{\theta_{1}(\tilde{\eta} / 2+z)}{\theta_{1}(\tilde{\eta} / 2-z)}$ (bare momentum), $\vartheta(z)=i \log \frac{\theta_{1}(\tilde{\eta}+z)}{\theta_{1}(\tilde{\eta}-z)}$ (bare phase), $n_{j} \in \mathbb{Z}$.

- When η is rational ($\eta=r / L$), in the domain $0<\eta<\frac{1}{2}$ and for $N \rightarrow+\infty$, all roots x_{j} of the ground states, for which $n=N / 2$ and $n_{j+1}-n_{j}=1$, are real and densely fill $[-1 / 2 ; 1 / 2]$ with density $\rho(x)$.
- In the thermodynamic limit: $2(L-r)$ degenerate Bethe ground states, labelled by quantum numbers $k \in \mathbb{Z} / 2 \mathbb{Z}$ and $\ell \in \mathbb{Z} /(L-r) \mathbb{Z}$ (Pearce, Batchelor).
- We now consider two ground states $\left|\{x=\tilde{\eta} u\}, \omega_{x}\right\rangle=\left|k_{x}, \ell_{x}\right\rangle$, $\left|\{y=\tilde{\eta} v\}, \omega_{y}\right\rangle=\left|k_{y}, \ell_{y}\right\rangle$
- Sum rules for roots of Bethe ground states?

Finite size corrections

Let f be a 1-periodic and $\mathcal{C}^{\infty}(\mathbb{R})$ function. If $\left\{x_{j}\right\}_{1 \leq j \leq n}$ parametrizes one of the $2(L-r)$ ground states,

$$
\frac{1}{N} \sum_{j=1}^{n} f\left(x_{j}\right)=\int_{-1 / 2}^{1 / 2} f(z) \rho(z) d z+O\left(N^{-\infty}\right)
$$

If g is $\mathcal{C}^{\infty}(\mathbb{R})$ function such that g^{\prime} is 1-periodic,

$$
\frac{1}{N} \sum_{j=1}^{n} g\left(x_{j}\right)=\int_{-1 / 2}^{1 / 2} g(z) \rho(z) d z+\frac{c_{g}}{N} \sum_{j=1}^{n} x_{j}+O\left(N^{-\infty}\right)
$$

where $c_{g}=g(1 / 2)-g(-1 / 2)$.
\rightsquigarrow this allows us to compute the sum rules while controlling finite size corrections

- $\left(\left\{x_{j}\right\}, \mathrm{k}_{x}, \ell_{x}\right)$ and $\left(\left\{y_{k}\right\}, \mathrm{k}_{y}, \ell_{y}\right)$ two Bethe ground states

$$
\sum_{l=1}^{n}\left(x_{l}-y_{l}\right)=\frac{L\left(\mathrm{k}_{x}-\mathrm{k}_{y}\right)+2\left(\ell_{x}-\ell_{y}\right)}{2(L-r)}+O\left(N^{-\infty}\right)
$$

with $\mathrm{k}_{x}, \mathrm{k}_{y} \in \mathbb{Z} / 2 \mathbb{Z}$, and $\ell_{x}, \ell_{y} \in \mathbb{Z} /(L-r) \mathbb{Z}$.

- we want to compute the form factor at the thermodynamic limit. between two ground states

$$
\frac{\left\langle\mathrm{k}_{x}, \ell_{x}\right| \sigma_{m}^{z}\left|\mathrm{k}_{y}, \ell_{y}\right\rangle}{\left(\left\langle\mathrm{k}_{x}, \ell_{x} \mid \mathrm{k}_{x}, \ell_{x}\right\rangle\left\langle\mathrm{k}_{y}, \ell_{y} \mid \mathrm{k}_{y}, \ell_{y}\right\rangle\right)^{1 / 2}}=\underbrace{\frac{\left\langle\mathrm{k}_{x}, \ell_{x}\right| \sigma_{m}^{z}\left|\mathrm{k}_{y}, \ell_{y}\right\rangle}{\left\langle\mathrm{k}_{y}, \ell_{y} \mid \mathrm{k}_{y}, \ell_{y}\right\rangle}}_{\mathcal{M}} \cdot \underbrace{\left(\frac{\left\langle\mathrm{k}_{y}, \ell_{y} \mid \mathrm{k}_{y}, \ell_{y}\right\rangle}{\left\langle\mathrm{k}_{x}, \ell_{x} \mid \mathrm{k}_{x}, \ell_{x}\right\rangle}\right)^{1 / 2}}_{\mathcal{N}}
$$

- The norm is expressed as a single determinant representation of size n, $\mathcal{N}^{2} \propto \frac{\operatorname{det}_{n}[\widetilde{\Phi}(\{y\})]}{\operatorname{det}_{n}[\widetilde{\Phi}(\{x\})]}$
- at the thermodynamic limit, the determinant with $n=N / 2$ tends to Fredholm determinants

$$
\operatorname{det}_{n}[\widetilde{\Phi}(\{y\})]=(-2 \pi i \tilde{\eta} N)^{n} \prod_{l=1}^{n} \rho\left(y_{l}\right)\left\{\operatorname{det}\left[1+\widehat{K}-\widehat{V}_{0}\right]+O\left(N^{-\infty}\right)\right\}
$$

with integral operators \widehat{K} and \widehat{V}_{0} acting on $[-1 / 2,1 / 2]$ with respective kernel $K(y-z)=\frac{i}{2 \pi}\left\{\frac{\theta_{1}^{\prime}(y-z+\tilde{\eta})}{\theta_{1}(y-z+\tilde{\eta})}-\frac{\theta_{1}^{\prime}(y-z-\tilde{\eta})}{\theta_{1}(y-z-\tilde{\eta})}\right\}$ and $V_{0}(y-z)=2 \eta$

- We eventually find $\mathcal{N}^{2}=\left(\frac{\omega_{y}}{\omega_{x}}\right)^{2 n}=\left(e^{2 i \pi \frac{\ell_{y}-\ell_{x}}{L}}\right)^{2 n}$
- $\left\langle\mathrm{k}_{x}, \ell_{x}\right| \sigma_{m}^{z}\left|\mathrm{k}_{y}, \ell_{y}\right\rangle$ expressed as a difference of determinants of size n
- Similarly, \mathcal{M} is expressed as a ratio of Fredholm determinants,

$$
\mathcal{M} \propto \frac{\operatorname{det}\left[1+(-1)^{\mathrm{k}} \widehat{K}+\frac{1-(-1)^{\mathrm{k}}}{2} \widehat{V}\right]-\operatorname{det}\left[1+(-1)^{\mathrm{k}} \widehat{K}-\frac{1-(-1)^{\mathrm{k}}}{2} \widehat{V}\right]}{\operatorname{det}\left[1+\widehat{K}-\widehat{V}_{0}\right]}+O\left(N^{-\infty}\right)
$$

with $\mathrm{k}=\mathrm{k}_{y}-\mathrm{k}_{x}$, and where \widehat{V} acts on $[-1 / 2,1 / 2]$ with kernel $\frac{i}{\pi} \theta_{1}^{\prime}(0)$

- computing these Fredholm determinants, we obtain the form factor in the Bethe basis

$$
\begin{aligned}
& \frac{1-(-1)^{k}}{2}(-1)^{m-1} \prod_{m=1}^{+\infty} \frac{\left(1-\tilde{q}^{m}\right)^{2}\left(1+\tilde{p}^{m} \tilde{q}^{-m}\right)^{2}}{\left(1+\tilde{q}^{m}\right)^{2}\left(1-\tilde{p}^{m} \tilde{q}^{-m}\right)^{2}} \\
\times & \lim _{\alpha \rightarrow 0}\left\{\frac{i}{\pi(L-r)} \sum_{s \in s_{0}+\mathbb{Z} / L \mathbb{Z}} e^{2 \pi i\left(\frac{r+2 \ell}{2(L-r)}+\eta \alpha\right) s} \frac{\theta_{1}\left(\tilde{\eta} s+\frac{L+2 \ell}{2(L-r)}+\alpha\right) \theta_{1}^{\prime}(0)}{\theta_{1}(\tilde{\eta} s) \theta_{1}\left(\frac{L+2 \ell}{2(L-r)}+\alpha\right)}\right\}+O\left(N^{-\infty}\right) .
\end{aligned}
$$

- The parameter α is here to regularize the formula
- this form factor depends only on the difference $k=k_{y}-k_{x}$ and $\ell=\ell_{y}-\ell_{x}$ of the quantum numbers.
- If $k=0$, the form factor vanishes \rightsquigarrow Bethe basis is not polarized.

Spontaneous staggered polarization

- a polarized basis is, for $\epsilon \in \mathbb{Z} / 2 \mathbb{Z}$ and $t \in \mathbb{Z} /(L-r) \mathbb{Z}$,

$$
\begin{equation*}
|\epsilon, \mathrm{t}\rangle=\frac{1}{\sqrt{2(L-r)}} \sum_{\mathrm{k}=0}^{1} \sum_{\ell=0}^{L-r-1}(-1)^{k \epsilon} e^{-i \pi \frac{r \mathrm{k}+2 \ell}{L-r}\left(\mathrm{t}+s_{0}\right)} \frac{|\mathrm{k}, \ell\rangle}{\langle\mathrm{k}, \ell \mid \mathrm{k}, \ell\rangle^{1 / 2}} \tag{2}
\end{equation*}
$$

(2) tends to the flat ground state configuration $(t, t+1, t, t+1, \ldots)$ or $(\mathrm{t}+1, \mathrm{t}, \mathrm{t}+1, \mathrm{t}, \ldots)$ in the low temperature limit $(\tau \rightarrow 0)$

- In this basis, the form factor is diagonal (spontaneous polarization)

$$
\begin{aligned}
\langle\epsilon, \mathrm{t}| \sigma_{m}^{z}\left|\epsilon^{\prime}, \mathrm{t}^{\prime}\right\rangle=\delta_{\epsilon, \epsilon^{\prime}} \delta_{\mathrm{t}, \mathrm{t}^{\prime}}(-1)^{m-1+\epsilon} & \prod_{m=1}^{+\infty} \frac{\left(1-\tilde{q}^{m}\right)^{2}\left(1-\tilde{p}^{m} \tilde{q}^{-m-\mathrm{t}}\right)}{\left(1+\tilde{q}^{m}\right)^{2}\left(1+\tilde{p}^{m} \tilde{q}^{-m-\mathrm{t}}\right)} \\
& \prod_{m=0}^{+\infty} \frac{\left(1-\tilde{p}^{m} \tilde{q}^{-m+\mathrm{t}}\right)}{\left(1+\tilde{p}^{m} \tilde{q}^{-m+\mathrm{t}}\right)}+O\left(N^{-\infty}\right)
\end{aligned}
$$

with $\tilde{p}=e^{2 i \pi \tilde{\tau}}, \tilde{q}=e^{2 i \pi \tilde{\eta}}$ and $s_{0}=\frac{1}{2 \tilde{\eta}}$.

- with conjugate periods, it is equal to

$$
\langle\epsilon, \mathrm{t}| \sigma_{m}^{z}|\epsilon, \mathrm{t}\rangle=(-1)^{m+\epsilon} \frac{i \tau}{\pi \eta} \frac{\theta_{1}^{\prime}\left(0 ; \frac{\tau}{\eta}\right) \theta_{1}\left(\frac{\eta \mathrm{t}}{1-\eta} ; \frac{\tau}{1-\eta}\right)}{\theta_{4}\left(0 ; \frac{\tau}{\eta}\right) \theta_{4}\left(\frac{\eta \mathrm{t}}{1-\eta} ; \frac{\tau}{1-\eta}\right)}+O\left(N^{-\infty}\right)
$$

\rightsquigarrow Proof of a conjecture by Date \& al 1990 J. Phys. A: Math. Gen. 23 L163.

Multi-point Local Height Probabilities

- For $|\epsilon, \mathrm{t}\rangle$, one of the $2(L-r)$ ground states of the CSOS model compatible with the flat configurations
- The multi-point local height probabilities are defined as the thermodynamic limit of,

$$
\begin{equation*}
\overline{\mathbf{P}}_{\alpha_{1}, \ldots, \alpha_{m}}(\mathbf{s} ; \epsilon, \mathrm{t})=\langle\epsilon, \mathrm{t}| \delta_{\mathbf{s}} E_{1}^{\alpha_{1}, \alpha_{1}} \ldots, E_{m}^{\alpha_{m}, \alpha_{m}}|\epsilon, \mathrm{t}\rangle \tag{3}
\end{equation*}
$$

for $\alpha_{j} \in\{+,-\}, \delta_{\mathbf{s}}(s)=\delta_{\mathbf{s}, \mathrm{s}}$.

- Probability that on the same vertical line of the lattice, the height takes the successive values $\mathbf{s}, \mathbf{s}+\alpha_{1}, \ldots, \mathbf{s}+\alpha_{1}+\ldots+\alpha_{m}$.
- (3) can be computed directly from the multi-point matrix elements $\mathbb{P}_{\alpha_{1}, \ldots, \alpha_{m}}\left(\mathbf{s} ;\{u\}, \omega_{u},\{v\}, \omega_{v}\right)=\frac{\left\langle\{u\}, \omega_{u}\right| \delta_{s} E_{1}^{\alpha_{1}, \alpha_{1}} \ldots, E_{m}^{\alpha_{m}, \alpha_{m}}\left|\{v\}, \omega_{v}\right\rangle}{\left\langle\{u\}, \omega_{u} \mid\{u\}, \omega_{u}\right\rangle^{1 / 2}\left\langle\{v\}, \omega_{v} \mid\{v\}, \omega_{v}\right\rangle^{1 / 2}}$
- QIP expresses the elementary matrices as generators of the YB algebra \rightsquigarrow acting on the right state, $\mathbb{P}_{\alpha_{1}, \ldots, \alpha_{m}}$ is expressed as sum of determinants \rightsquigarrow sums over Bethe roots and inhomogeneities related to the action of the Yang-Baxter algebra \rightsquigarrow sum over all the values of the dynamical parameter (L terms) related to the partial scalar product formula
- Simplest example: local height probability ($m=0$)

One-point local height probabilities

- We want to compute $\overline{\mathbf{P}}(\mathbf{s} ; \epsilon, \mathrm{t})=\langle\epsilon, \mathrm{t}| \delta_{\mathbf{s}}|\epsilon, \mathrm{t}\rangle$
- Start from the one-point matrix elements of δ_{s} in the Bethe basis

$$
\frac{\left\langle\{u\}, \omega_{u}\right| \delta_{s}\left|\{v\}, \omega_{v}\right\rangle}{\left\langle\{v\}, \omega_{v} \mid\{v\}, \omega_{v}\right\rangle} \cdot\left(\frac{\left\langle\{v\}, \omega_{v} \mid\{v\}, \omega_{v}\right\rangle}{\left\langle\{u\}, \omega_{u} \mid\{u\}, \omega_{u}\right\rangle}\right)^{1 / 2}
$$

- Recall that scalar product is defined as

$$
\left\langle\{u\}, \omega_{u} \mid\{v\}, \omega_{v}\right\rangle=\frac{1}{L} \sum_{s \in s_{0}+\mathbb{Z} / L \mathbb{Z}} \bar{\varphi}(s) \varphi(s) S_{n}(\{u\} ;\{v\} ; s)
$$

with $S_{n}(\{u\} ;\{v\} ; s)$ the partial scalar product
$S_{n}(\{u\} ;\{v\} ; s) \propto \sum_{\nu=0}^{L-1} q^{\nu s} a_{\gamma}^{(\nu)}\left(s_{0}\right) \operatorname{det}_{n}\left[\Omega_{\gamma}^{(\nu)}(\{u\} ;\{v\})\right]$, with
$\Omega_{\gamma}^{(\nu)}(\{u\} ;\{v\})$ the scalar product matrix deformed by $q^{ \pm \nu}=e^{ \pm 2 i \pi \nu \eta}$

- The one-point matrix element of δ_{s} is expressed as a sum of L terms

$$
\frac{\left\langle\{u\}, \omega_{u}\right| \delta_{\mathrm{s}}\left|\{v\}, \omega_{v}\right\rangle}{\left\langle\{v\}, \omega_{v} \mid\{v\}, \omega_{v}\right\rangle} \propto \prod_{j<k} \frac{\left[v_{j}-v_{k}\right]}{\left[u_{j}-u_{k}\right]} \frac{1}{L} \sum_{\nu=0}^{L-1} q^{\nu \mathbf{s}} a_{\gamma}^{(\nu)}\left(s_{0}\right) \frac{\operatorname{det}_{n}\left[\Omega_{\gamma}^{(\nu)}(\{u\} ;\{v\})\right]}{\operatorname{det}_{n}[\Phi(\{v\})]},
$$

- Convenient to insert the algebraic factor inside the determinant in order to take the thermodynamic limit

One-point local height probabilities

- Introduce the matrix \mathcal{X} to simplify the algebraic factor, with arbitrary γ

$$
[\mathcal{X}]_{j k}=\frac{[0]^{\prime}}{\left[\sum_{l=1}^{n}\left(u_{l}-v_{l}\right)+\gamma\right]} \frac{\prod_{l=1}^{n}\left[u_{k}-v_{l}\right]}{\prod_{l \neq k}\left[u_{k}-u_{l}\right]} \frac{\left[v_{j}-u_{k}+\sum_{l=1}^{n}\left(u_{l}-v_{l}\right)+\gamma\right]}{\left[v_{j}-u_{k}\right]},
$$

such that

$$
\operatorname{det}_{n}[\mathcal{X}]=\left(-[0]^{\prime}\right)^{n} \frac{[\gamma]}{\left[\sum_{l=1}^{n}\left(u_{l}-v_{l}\right)+\gamma\right]} \prod_{j<k} \frac{\left[v_{j}-v_{k}\right]}{\left[u_{j}-u_{k}\right]},
$$

- determinant identity $\prod_{j<k} \frac{\left[v_{j}-v_{k}\right]}{\left[u_{j}-u_{k}\right]} \operatorname{det}_{n}\left[\Omega_{\gamma}^{(\nu)}\right] \propto \operatorname{det}_{n}\left[\mathcal{X} \Omega_{\gamma}^{(\nu)}\right] \propto \operatorname{det}_{n}\left[\mathcal{H}_{\gamma}^{(\nu)}\right]$
- when $\left(\{v\}, \omega_{v}\right) \rightarrow\left(\{u\}, \omega_{u}\right), \mathcal{H}_{\gamma}^{(\nu)} \nrightarrow \Phi$ for $\nu \neq 0$
- At the thermodynamic limit, for two ground states, the last determinant with $n=\frac{N}{2}$ tends to a Fredholm determinant

$$
\operatorname{det}_{n}\left[\mathcal{H}_{\gamma}^{(\nu)}\right] \rightarrow \operatorname{det}\left[1+\widehat{K}_{\tilde{\gamma}+|x|-|y|}^{(\eta(\tilde{\gamma}-\nu)+|x|-|y|)}\right]+O\left(N^{-\infty}\right)
$$

where $\widehat{K}_{X}^{(Y)}$ acts on $\left[-\frac{1}{2}, \frac{1}{2}\right]$ with kernel $K_{X}^{(Y)}$ given by

$$
K_{X}^{(Y)}(z)=\frac{i}{2 \pi} \frac{\theta_{1}^{\prime}(0)}{\theta_{1}(X)}\left\{e^{2 i \pi Y} \frac{\theta_{1}(z+X+\tilde{\eta})}{\theta_{1}(z+\tilde{\eta})}-e^{-2 i \pi Y} \frac{\theta_{1}(z+X-\tilde{\eta})}{\theta_{1}(z-\tilde{\eta})}\right\}
$$

One-point local height probabilities

- Bethe basis: matrix elements of δ_{s} at the thermodynamic limit

$$
\mathbb{P}\left(\mathbf{s} ; \mathbf{k}_{x}, \ell_{x} ; \mathbf{k}_{y}, \ell_{y}\right) \propto e^{-i \pi \mathbf{s}\left(-\frac{r k+2 \ell}{L-r}+2 \eta \tilde{\gamma}\right)} f_{\tilde{\gamma}}(\mathrm{k}, \ell, \mathbf{s}) \sum_{\nu=0}^{L-1} q^{\nu \mathbf{s}} a_{\gamma}^{(\nu)}\left(s_{0}\right) g_{\tilde{\gamma}}(\mathrm{k}, \ell)
$$

with $\mathrm{k}=\mathrm{k}_{y}-\mathrm{k}_{x}, \ell=\ell_{y}-\ell_{x}, f_{\tilde{\gamma}}(\mathrm{k}, \ell, \mathrm{s})$ and $g_{\tilde{\gamma}}(\mathrm{k}, \ell)$ ratio of θ functions.
Polarized basis: Local height probability is diagonal

- for even L :
$\rightsquigarrow \epsilon+\mathbf{s}-\mathrm{t}$ odd, $\overline{\mathbf{P}}(\mathbf{s} ; \epsilon, \mathrm{t})=\langle\epsilon, \mathrm{t}| \delta_{\mathbf{s}}|\epsilon, \mathrm{t}\rangle=0$
$\rightsquigarrow \epsilon+s-t$ even,

$$
\overline{\mathbf{P}}(\mathbf{s} ; \epsilon, \mathrm{t})=\frac{2}{L} \frac{\theta_{4}\left(\frac{r}{L} \tilde{\mathbf{s}} ; \tau\right)}{\theta_{4}\left(\eta \tilde{\mathrm{t}} \frac{L}{L-r} ; \frac{L}{L-r} \tau\right)} \frac{\theta_{3}\left(-\frac{\tilde{\tilde{t}}}{(L-r)}+\frac{\tilde{s}}{L} ; \frac{\tau}{r(L-r)}\right)}{\theta_{4}\left(0 ; \frac{L}{r} \tau\right)}+O\left(N^{-\infty}\right)
$$

- for odd L

$$
\overline{\mathbf{P}}(\mathbf{s} ; \epsilon, \mathrm{t})=\frac{1}{L} \frac{\theta_{4}\left(\frac{r}{L} \tilde{\mathbf{s}} ; \tau\right) \theta_{3}\left(\frac{\tilde{\mathbf{s}}}{2 L}-\frac{\tilde{\mathrm{t}}}{2(L-r)}+\frac{\tilde{\mathrm{t}}-\tilde{\tilde{s}}+\epsilon}{2} ; \frac{\tau}{4 r(L-r)}\right)}{\theta_{4}\left(0 ; \frac{L}{r} \tau\right) \theta_{4}\left(\frac{r \tilde{r}_{2}}{L-r} ; \frac{L \tau}{L-r}\right)}+O\left(N^{-\infty}\right)
$$

with $\tilde{\mathbf{s}}=\mathbf{s}-\frac{1}{2 \tilde{\eta}}, \tilde{\mathrm{t}}=\mathrm{t}-\frac{1}{2 \tilde{\eta}}$.
\rightsquigarrow same expressions as Pearce \& Seaton

Multi-point matrix elements

- Multi-point matrix elements in finite volume

$$
\mathbb{P}_{\alpha_{1}, \ldots, \alpha_{m}}=\frac{\left\langle\{u\}, \omega_{u}\right| \delta_{s} E_{1}^{\alpha_{1}, \alpha_{1}} \ldots, E_{m}^{\alpha_{m}, \alpha_{m}}\left|\{v\}, \omega_{v}\right\rangle}{\left\langle\{v\}, \omega_{v} \mid\{v\}, \omega_{v}\right\rangle} \cdot\left(\frac{\left\langle\{v\}, \omega_{v} \mid\{v\}, \omega_{v}\right\rangle}{\left\langle\{u\}, \omega_{u} \mid\{u\}, \omega_{u}\right\rangle}\right)^{1 / 2}
$$

- QIP expresses the elementary matrices as generators of the YB algebra \rightsquigarrow acting on the right state, $\mathbb{P}_{\alpha_{1}, \ldots, \alpha_{m}}$ is expressed as sum of determinants (commutation relations + partial scalar products)

$$
\mathbb{P}_{\alpha_{1}, \ldots, \alpha_{m}} \propto \sum_{\left\{b_{p}\right\}} G_{\alpha_{1}, \ldots, \alpha_{m}}^{\gamma}\left(s ;\left\{v_{b_{p}}\right\},\{\xi\}\right) \times \sum_{\nu=0}^{L-1} q^{\nu s} a_{\gamma}^{(\nu)}\left(s_{0}\right) \frac{\operatorname{det}_{n}\left[\mathcal{H}_{\gamma ;\left\{b_{p}\right\}}^{(\nu)}\right]}{\operatorname{det}_{n}[\Phi(\{v\})]}
$$

- $G_{\alpha_{1}, \ldots, \alpha_{m}}^{\gamma}$ admits a similar algebraic part that the elementary blocks of the XXZ chain + a dynamical part
- $N-m$ columns of $\mathcal{H}_{\gamma ;\left\{b_{p}\right\}}^{(\nu)}$ are of the form of the 1-point matrix elements determinant $\mathcal{H}_{\gamma}^{(\nu)}$
- m columns of $\mathcal{H}_{\gamma ;\left\{b_{p}\right\}}^{(\nu)}$ are of "form factor type"

Multi-point matrix elements

- How to take the thermodynamic limit?
$-\frac{\operatorname{det}_{n}\left[\mathcal{H}_{\gamma ;\left\{b_{p}\right\}}^{(\nu)}\right]}{\operatorname{det}_{n}[\Phi]}=\underbrace{\frac{\operatorname{det}_{n}\left[\mathcal{H}_{\gamma}^{(\nu)}\right]}{\operatorname{det}_{n}[\Phi]}}_{\mathcal{A}} \underbrace{\operatorname{det}_{n}\left[\mathcal{H}_{\gamma}^{(\nu)-1} \mathcal{H}_{\gamma ;\left\{b_{p}\right\}}^{(\nu)}\right]}_{\mathcal{B}}$
- At the thermodynamic limit
$\rightsquigarrow \mathcal{A}$ is equal to the 1 -point matrix elements determinants, which tends to two Fredholm determinants we already computed
\rightsquigarrow determinant $\mathcal{B}=\operatorname{det}_{m}\left[\mathcal{S}_{\gamma ;\left\{b_{p}\right\}}^{(\nu)}\right]$ has a finite size m (length of the correlation function)
- Matrix elements of $\mathcal{S}_{\gamma ;\left\{b_{p}\right\}}^{(\nu)}$ can be computed explicitly at the thermodynamic limit and are expressed with a "modified" density $\rho_{\gamma}^{(\nu)}$
- Finally,

$$
\begin{aligned}
& \frac{\left\langle\mathrm{k}_{x}, \ell_{x}\right| \delta_{\mathbf{s}} E_{1}^{\alpha_{1} \alpha_{1}} \ldots E_{m}^{\alpha_{m} \alpha_{m}}\left|\mathrm{k}_{y}, \ell_{y}\right\rangle}{\left\langle\mathrm{k}_{y}, \ell_{y} \mid \mathrm{k}_{y}, \ell_{y}\right\rangle}=\sum_{\left\{b_{p}\right\}} \widetilde{G}_{\alpha_{1}, \ldots, \alpha_{m}}\left(\mathbf{s} ;\left\{y_{b_{p}}\right\},\{\zeta\}\right) \\
& \times \sum_{\nu=0}^{L-1} q^{\nu \mathbf{s}} a_{\gamma}^{(\nu)}\left(s_{0}\right) \frac{\operatorname{det}_{n}\left[\widetilde{\mathcal{H}}_{\gamma}^{(\nu)}\left(\{x\}, \omega_{x} ;\{y\}, \omega_{y}\right)\right]}{\operatorname{det}_{n}[\widetilde{\Phi}(\{y\})]} \operatorname{det}_{m}\left[\widetilde{\mathcal{S}}_{\gamma ;\left\{b_{p}\right\}}^{(\nu)}\right]
\end{aligned}
$$

Multi-point matrix elements

- Extracting a 1-point matrix element parts from $\widetilde{\mathcal{S}}_{\gamma ;\left\{b_{p}\right\}}^{(\nu)}$
- Sums over Bethe roots become integrals such that in the Bethe basis, the multi-point matrix elements looks like (with $|z|-|\zeta|=\sum_{t=1}^{m} z_{t}-\zeta_{t}$)

$$
\begin{align*}
\mathbb{P}_{\alpha_{1}, \ldots, \alpha_{m}}\left(\mathbf{s} ; \mathrm{k}_{x}, \ell_{x} ; \mathrm{k}_{y}, \ell_{y}\right) \propto \int_{\mathcal{C}_{-}} \prod_{j=1}^{\left|\alpha_{-}\right|} d z_{j} \int_{\mathcal{C}_{+}} \prod_{j=\left|\alpha_{-}\right|+1}^{m} d z_{j} \underbrace{\widetilde{G}_{\alpha_{1}, \ldots, \alpha_{m}}(\mathbf{s} ;\{z\},\{\zeta\})}_{\text {algebraic part }} \\
\times \underbrace{\overline{\mathcal{S}}_{m}(\{z\} ;\{\zeta\})}_{\text {determinant contribution }} \underbrace{\overline{\mathbb{P}}(\mathbf{s},|z|-|\zeta| ; \mathrm{k}, \ell)}_{\text {deformed 1-point M.E. }}+O\left(N^{-\infty}\right), \quad \text { (4) } \tag{4}
\end{align*}
$$

- Integration contours are such that $\mathcal{C}_{-}=[-1 / 2,1 / 2], \mathcal{C}_{+}=\mathcal{C}_{-} \cup \Gamma(\{\xi\})$,
- ground states dependance contained inside the deformed 1-point M.E. $\overline{\mathbb{P}}(\mathbf{s},|z|-|\zeta| ; \mathrm{k}, \ell)$ (analytical part). The latter is such that $\mathbb{P}\left(s ; \mathrm{k}_{x}, \ell_{x} ; \mathrm{k}_{y}, \ell_{y}\right)=\overline{\mathbb{P}}(\mathrm{s}, 0 ; \mathrm{k}, \ell)+O\left(N^{-\infty}\right)$
- Representation of (4) is similar to the elementary blocks of the XXZ chain
- The sum over the dynamical parameter (L terms) entirely contained inside $\overline{\mathbb{P}}(\mathbf{s},|z|-|\zeta| ; \mathrm{k}, \ell)$

Multi-point local height probabilities

- Polarized basis:

$$
\overline{\mathbf{P}}(s, Z ; \epsilon, \mathrm{t})=\sum_{\mathrm{k}=0}^{1} \sum_{\ell=0}^{L-r-1}(-1)^{\mathrm{k} \epsilon} e^{-i \pi \frac{r \mathrm{k}+2 \ell}{L-r}\left(\mathrm{t}+s_{0}\right)} \overline{\mathbb{P}}(\mathrm{s}, Z ; \mathrm{k}, \ell)
$$

- only the analytical part is changed (resummation is possible)

$$
\begin{aligned}
\overline{\mathbf{P}}_{\alpha_{1}, \ldots, \alpha_{m}}(s ; \epsilon, \mathrm{t}) \propto \int_{\mathcal{C}_{-}} & \prod_{j=1}^{\alpha-1} d z_{j} \int_{\mathcal{C}_{+}} \prod_{j=\left|\alpha_{-}\right|+1}^{m} d z_{j} \widetilde{G}_{\alpha_{1}, \ldots, \alpha_{m}}(s ;\{z\},\{\zeta\}) \\
& \times \overline{\mathcal{S}}_{m}(\{z\} ;\{\zeta\}) \overline{\mathbf{P}}(s,|z|-|\zeta| ; \epsilon, \mathrm{t})+O\left(N^{-\infty}\right)
\end{aligned}
$$

- MPLHP are diagonals: ground states sectors are frozen

$$
\begin{aligned}
& \left.\overline{\mathbf{P}}(s, Z ; \epsilon, \mathrm{t})\right|_{\substack{L \text { even } \\
\epsilon+t+s_{0}-s \text { odd }}}=0, \quad \text { with } \tilde{s}_{0}=s_{0}+\frac{1}{2 \tilde{\eta}} \in \mathbb{R}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\overline{\mathbf{P}}(s, Z ; \epsilon, \mathrm{t})\right|_{L \text { odd }}=e^{i \pi\left(2 \frac{r}{L} \tilde{s} Z-\frac{L-r}{L} Z^{2} \tilde{\tau}\right)} \\
& \times \frac{\theta_{4}\left(\frac{r \tilde{s}}{L} ; \tau\right) \theta_{3}\left(\left(\frac{1}{2}-\frac{1}{2 L}\right) \tilde{s}-\left(\frac{1}{2}-\frac{1}{2(L-r)}\right)\left(\tilde{s}_{0}+\mathrm{t}\right)-\frac{\epsilon}{2}+\frac{Z}{2 r} \tau ; \frac{\tau}{4 r(L-r)}\right)}{L \theta_{4}\left(0 ; \frac{L}{r} \tau\right) \theta_{4}\left(\frac{r\left(\tilde{s}_{0}+\mathrm{t}\right)}{L-r} ; \frac{L}{L-r} \tau\right)},
\end{aligned}
$$

- single m-fold integral as for the XXZ spin chain

Conclusion and perspectives

- Summary of the results obtained for the cyclic SOS model
\star Determinant representations for scalar products/norms of Bethe states/form factors in finite volume (Véronique's talk)
* representation as L multiple sums of determinants for the Multi-point matrix elements in finite volume
* Study of the thermodynamic limit:
\rightsquigarrow Explicit result for the spontaneous polarization at the thermodynamic limit
\rightsquigarrow single m-fold integral formula for the MPLHP
- Further questions...
* study of two-point correlation functions in the thermodynamic limit
* Unrestricted SOS model? $(\eta \in \mathbb{R})$
* XYZ model?
\rightsquigarrow combinatorial complexity of Vertex-IRF transformation

