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1. Integral representation of the one-point function

My final goal is to compute the following infinite-fold integral:

〈Φα(0)〉R

=

∫ ∞
∏

j=−∞

dθj

∞
∏

j=−∞

Q2(θj)e
(ν̃+ν)αθj

∏

i<j

sinh ν(θi − θj) sinh ν̃(θi − θj) ,

where
1

ν
+

1

ν̃
= 1, ν = 1 + b2, ν̃ = 1 + b−2 ,

the function Q(θ) is defined by three requirements.
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Quantum Wronskian equation

Q
(

θ + πi
2

)

Q
(

θ − πi
2

)

−Q
(

θ + πi(ν−2)
2ν

)

Q
(

θ − πi(ν−2)
2ν

)

= 1 .

Asymptotics

logQ(θ) = −ρ cosh θ +O(1), θ → ±∞ .

Ground state: no zeros in the strip |Im(θ)| ≤ π.

For the final formula to be applicable only the first requirement really count,

two others may be eased considerably.
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2. Meaning of the integral, semiclassical consideration

Consider the sinh-Gordon model with the action:

A =

∫
{

[ 1

4π
∂zϕ(z, z̄)∂z̄ϕ(z, z̄) +

2µ2

sinπb2
cosh(bϕ(z, z̄))

}

idz ∧ dz̄

2
,

on the cylinder
C = C/2πiR Z .

Then the main integral gives the SoV representation of the functional
integral

〈Φα(0)〉R =

∫

e−A+aϕ(0)
∏

z,z̄∈C

Dϕ(z, z̄) ,

with the convention

a =
1

2
(b+ b−1)α .
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For the sake of classical limit ~ = b2 → 0 it is convenient to introduce
φ(z, z̄) = bϕ(z, z̄). Then the classical action is

A =
1

4π

∫

{[

∂zφ(z, z̄)∂z̄φ(z, z̄) + 2m2 cosh(φ(z, z̄))
} idz ∧ dz̄

2
,

where m2 = µ
2 16πb2

sinπb2
is semi-classically finite.

The main contribution to the functional integral is given by regularised
action evaluated on the classical solution

∂z∂z̄φ
cl(z, z̄) =

m

2
sinhφcl(z, z̄) ,

rapidly decreasing at infinity, and possessing the singularity at 0:

φcl(z, z̄) ≃ 2α log |z| , z → 0 .
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This can be computed (Lukyanov):

Acl =
α2

2
log

(m

4

)

+

∫ ∞

0

dt

t

(

sinh2(αt)

t sinh(2t)
− α2

2
e−2t

)

−
α
∫

0

dα

∞
∫

−∞

dθ

2πi
log

(

1− e−r cosh θ−πiα

1− e−r cosh θ+πiα

)

,

where r = 2πmR. With this we have:

〈Φα(0)〉R ∼ e−
1

b2
A

cl

.
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3. Hamiltonian approach

γ
Γ

Consider the Hamiltonian picture with time going along the cylinder, and
space along Γ (Matsubara). Then

〈Φα(0)〉R = 〈Ψ|Φα(0)|Ψ〉 ,

where Ψ is the ground state corresponding to the maximal eigenvalue of

the Matsubara transfer-matrix.
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4. Classics

Sinh-Gordon equation is equivalent to the zero-curvature condition for the
connection:

L = ∂z +
1

4
∂zφσ

3 − λ
m

2

(

eφσ+ + e−φσ−
)

,

L = ∂z̄ −
1

4
∂z̄φσ

3 − 1

λ

m

2

(

eφσ− + e−φσ+
)

.

We construct the monodromy matrix:

M(λ, z) = P exp

z+2πiR
∫

z

(Ldz + Ldz̄) =

(

A(λ) B(λ)

C(λ) D(λ)

)

.

Its trace T (λ) = TrM(λ, z) , does not depend on z, this is the generating
function of integrals of motion. The matrix elements of M(λ, z) are
single-valued functions on the hyper-elliptic curve of infinite genus:

T (λ) = µ+
1

µ
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Separated variables. Zeros of the function B(λ) are real. We order them
and denote by λj , −∞ < j < ∞. These zeros depend on y. They either
oscillate inside the zones |T (λ)| > 2 or stay at double points |T (λ)| = 2.
The variables log λj and logµj are canonical:

pdq =
∞
∑

j=−∞

logµjd logλj .

Consider zeros of T (λ) (τj) as one half of coordinates on the phase
space. Then we have for Liouville measure

(dp ∧ dq)∧
∞

2 =
∞
∏

j=−∞

1

µj − µ−1
j

∏

i<j

(λ2
i − λ2

j )
∞
∧

j=−∞

d log λj

∞
∧

j=−∞

dτj .

It is convenient to switch to the variables θj = log λj .

Now everything is prepared for writing the semi-classical expression for

the matrix elements of an operator O({θj}). There is a cohomological

argument for considering only this kind of operators.
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We have

〈Ψ1|O|Ψ2〉 =
∫ ∞

∏

j=−∞

dθj

∞
∏

j=−∞

Q1(θj)Q2(θj)e
1

b2
2jθj

∏

i<j

sinh(θi − θj) ,

where

Q(θj) ≃
1

(µj − µ−1
j )

1

2

exp
{ 1

ib2

λj
∫

log µ d log λ
}

.

We consider the simplest case when both Ψ1,2 are the ground state. For
this case

µ = e
1

2
mR(λ−λ−1) ,

which implies

Q(θ) ≃ 1

(sinh(mR sinh θ))
1

2

e−
1

b2
mR cosh θ .
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For the operator O we take

Φα(0) = e
1

b2
α
∑

θj .

This gives the semi-classical approximation of our original formula.

The exact quantum formula can be considered as a result of Sklyanin’s
quantisation in separated variables. The function Q(θ) satisfy the
requirements formulated above. The following formula fixes ρ in the
asymptotics:

ρ =
4ν

√

π(ν − 1)
Γ
(

1− 1
2ν

)

Γ
(

1
2 + 1

2ν

)

· (µΓ(ν))
1

ν√
ν − 1

R .

The formula for Acl is obtained by the steepest descend method.
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5. Exact computation in quantum case

We had the equation

Q
(

θ + πi
2

)

Q
(

θ − πi
2

)

−Q
(

θ + πi(ν−2)
2ν

)

Q
(

θ − πi(ν−2)
2ν

)

= 1 ,

which can be thought about as a discrete Liouville equation.
It is convenient to introduce the function ǫ(θ) via

e−ǫ(θ) = Q
(

θ + πi(ν−2)
2ν

)

Q
(

θ − πi(ν−2)
2ν

)

.

The fundamental role for the computation of the one-point functions is
played by the function ω(θ, θ′) which is a "Green function" for the
linearised equation with a twist α.
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Consider the linear operator:

(Dαf) (θ) =
(

1 + eǫ(θ)
) (

f(θ + πi
2 ) + f(θ − πi

2 )
)

− eπiαf(θ + πi(ν−2)
2ν )− e−πiαf(θ − πi(ν−2)

2ν ) .

The function ω(θ, θ′) satisfies the equations:

Dαω = ωD−α = f ,

where f is a “δ-function": f(θ − θ′) = 1
2π cosh(θ−θ′) .

This function allows the asymptotical expansion θ → ǫ∞, θ′ → ǫ′∞ :

ω(θ, θ′) ≃
∞
∑

j,k=1

e−ǫ(2j−1)θ−ǫ′(2k−1)θ′

ω2j−1,2k−1 .
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Main conjecture. We claim that

〈Φα−2 ν−1

ν
(0)〉

〈Φα(0)〉
= C(α)

(

1 +
2 sinπ(α+ 1

ν
)

π
ω1,−1

)

,

where

C(α) = (µΓ(ν))4x
Γ(−2νx)Γ(x)Γ(1/2− x)

Γ(2νx)Γ(−x)Γ(x+ 1/2)
, x = α

2 + 1−ν
2ν .

Moreover, using ω(θ, θ′) one can write down a formula for the normalised

to Φα one-point functions of all the descendants of operators Φα+2m ν−1

ν
.
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6. Checking classical case

In classical case ν = 1, and 1 + eǫ(θ) = er cosh θ . Hence

ω(θ + πi
2 , θ

′)
(

1− e−r cosh θ−πiα
)

+ ω(θ − πi
2 , θ

′)
(

1− e−r cosh θ+πiα
)

=
e−r cosh θ

2π cosh(θ − θ′)
.

This can be easily solved. The equivalence to Lukyanov’s formula reduces
to the identity

1− 2 sinπα

π
ω1,−1 = exp

(

1

πi

∫ ∞

−∞

log

(

1− e−r cosh θ+πiα

1− e−r cosh θ−πiα

)

dθ

)

.

The proof is an exercise on Riemann-Hilbert problem.
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7. Comparison with the Liouville three-point function

Conformal limit corresponds to R → 0. In this limit we should be able to
make comparison with the Liouville model with the central charge
c = 1 + 6Q2, Q = b+ 1/b.
There is a huge region in the configuration space where only the
dynamics of the zero-mode counts. We have the ZZ quantisation condition

2P

b
log

(

R1+b2
µΓ(b2)

)

= −π

2
(1 + 2n) + Im log (Γ(1 + 2iP/b)Γ(1 + 2iP b)) ,

which defines P as a function of R. The relation between shG one-pint
functions and Liouville three-point functions reads:

〈Φα(0)〉R ≃ N (P (R)) · C(Q/2− iP (R), a, Q/2 + iP (R)), R → 0 ,

(recall a = Qα/2).

This can be checked numerically.
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8. More mysterious relation to Liouville

Following Al. Zamolodchikov consider the discrete Liouville equation:

X(u+ 1, v)X(u− 1, v)−X(u, v + 1)X(u, v − 1) = 1 .

The continuous case is obtained by u = m, v = n, x = ∆m, y = ∆n,

X(m,n) = ∆−1e−
1

2
φ(x,y) .

Obviously, the equation

Q
(

θ + πi
2

)

Q
(

θ − πi
2

)

−Q
(

θ + πi(ν−2)
2ν

)

Q
(

θ − πi(ν−2)
2ν

)

= 1 ,

is obtained by the reduction:

X(u, v + 1) = X(u+ ν−2
ν

, v) ,

rescaling θ = πi
2 u , and omitting the redundant variable v. This relation

remains a mystery to which we add one more.
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Varying the discrete Liouville equation we obtain the linear opetrator:

(Df)(u, v) =
(

1 +
1

X(u, v + 1)X(u, v − 1)

)

(f(u+ 1, v) + f(u− 1, v))

− f(u, v + 1)− f(v, v − 1) .

The operator Dα which enters the definition of ω(θ, θ′) is obtained by the
reduction:

f(u, v + 1) = eπiαf(u+ ν−2
ν

, v) .

What is the meaning of all that?
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9. Thermodynamic Bethe Ansatz

Using the definition

e−ǫ(θ) = Q
(

θ + πi(ν−2)
2ν

)

Q
(

θ − πi(ν−2)
2ν

)

.

rewrite q-Wronskian equation as

Q
(

θ + πi
2

)

Q
(

θ − πi
2

)

= 1 + e−ǫ(θ) .

Together with asymptotics and absence oz zeros it means

logQ(θ) = −ρ cosh θ +

∞
∫

−∞

1

2π cosh(θ − θ′)
log

(

1 + e−ǫ(θ′)
)

dθ′ .

This implies the TBA equation

ǫ(θ) = 2πRm cosh θ −
∫ ∞

−∞

log
(

1 + e−ǫ(θ′)
)

Φ(θ − θ′)dθ′ .
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Kernels:

Φ(θ, θ′) = Φ0(θ, θ
′) ,

Φα(θ) =
eiπα

2π cosh(θ + πi ν−2
2ν )

+
e−iπα

2π cosh(θ − πi ν−2
2ν )

.

Denote by ∗ the convolution withe measure

dθ

1 + eǫ(θ)
.

Then
ω = f ∗ f + f ∗Rdress,α ∗ f ,

where the resolvent satisfies the equation

Rdress,α − Φα ∗Rdress,α = Φα .
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