On one-point functions for quantum sinh-Gordon model.

Fedor Smirnov

Joint work with Stefano Negro

1. Integral representation of the one-point function

My final goal is to compute the following infinite-fold integral:

$$
\begin{aligned}
& \left\langle\Phi_{\alpha}(0)\right\rangle_{R} \\
& =\int \prod_{j=-\infty}^{\infty} d \theta_{j} \prod_{j=-\infty}^{\infty} Q^{2}\left(\theta_{j}\right) e^{(\tilde{\nu}+\nu) \alpha \theta_{j}} \prod_{i<j} \sinh \nu\left(\theta_{i}-\theta_{j}\right) \sinh \tilde{\nu}\left(\theta_{i}-\theta_{j}\right),
\end{aligned}
$$

where

$$
\frac{1}{\nu}+\frac{1}{\tilde{\nu}}=1, \quad \nu=1+b^{2}, \quad \tilde{\nu}=1+b^{-2},
$$

the function $Q(\theta)$ is defined by three requirements.

- Quantum Wronskian equation

$$
Q\left(\theta+\frac{\pi i}{2}\right) Q\left(\theta-\frac{\pi i}{2}\right)-Q\left(\theta+\frac{\pi i(\nu-2)}{2 \nu}\right) Q\left(\theta-\frac{\pi i(\nu-2)}{2 \nu}\right)=1 .
$$

- Asymptotics

$$
\log Q(\theta)=-\rho \cosh \theta+O(1), \quad \theta \rightarrow \pm \infty
$$

- Ground state: no zeros in the strip $|\operatorname{Im}(\theta)| \leq \pi$.

For the final formula to be applicable only the first requirement really count, two others may be eased considerably.
2. Meaning of the integral, semiclassical consideration

Consider the sinh-Gordon model with the action:

$$
\mathcal{A}=\int\left\{\left[\frac{1}{4 \pi} \partial_{z} \varphi(z, \bar{z}) \partial_{\bar{z}} \varphi(z, \bar{z})+\frac{2 \mu^{2}}{\sin \pi b^{2}} \cosh (b \varphi(z, \bar{z}))\right\} \frac{i d z \wedge d \bar{z}}{2},\right.
$$

on the cylinder

$$
C=\mathbb{C} / 2 \pi i R \mathbb{Z}
$$

Then the main integral gives the SoV representation of the functional integral

$$
\left\langle\Phi_{\alpha}(0)\right\rangle_{R}=\int e^{-\mathcal{A}+a \varphi(0)} \prod_{z, \bar{z} \in C} \mathcal{D} \varphi(z, \bar{z}),
$$

with the convention

$$
a=\frac{1}{2}\left(b+b^{-1}\right) \alpha
$$

For the sake of classical limit $\hbar=b^{2} \rightarrow 0$ it is convenient to introduce $\phi(z, \bar{z})=b \varphi(z, \bar{z})$. Then the classical action is

$$
\mathcal{A}=\frac{1}{4 \pi} \int\left\{\left[\partial_{z} \phi(z, \bar{z}) \partial_{\bar{z}} \phi(z, \bar{z})+2 m^{2} \cosh (\phi(z, \bar{z}))\right\} \frac{i d z \wedge d \bar{z}}{2},\right.
$$

where $m^{2}=\boldsymbol{\mu}^{2} \frac{16 \pi b^{2}}{\sin \pi b^{2}}$ is semi-classically finite.
The main contribution to the functional integral is given by regularised action evaluated on the classical solution

$$
\partial_{z} \partial_{\bar{z}} \phi^{\mathrm{cl}}(z, \bar{z})=\frac{m}{2} \sinh \phi^{\mathrm{cl}}(z, \bar{z}),
$$

rapidly decreasing at infinity, and possessing the singularity at 0 :

$$
\phi^{\mathrm{cl}}(z, \bar{z}) \simeq 2 \alpha \log |z|, \quad z \rightarrow 0
$$

This can be computed (Lukyanov):

$$
\begin{aligned}
\mathcal{A}^{\mathrm{cl}}= & \frac{\alpha^{2}}{2} \log \left(\frac{m}{4}\right)+\int_{0}^{\infty} \frac{d t}{t}\left(\frac{\sinh ^{2}(\alpha t)}{t \sinh (2 t)}-\frac{\alpha^{2}}{2} e^{-2 t}\right) \\
& -\int_{0}^{\alpha} d \alpha \int_{-\infty}^{\infty} \frac{d \theta}{2 \pi i} \log \left(\frac{1-e^{-r \cosh \theta-\pi i \alpha}}{1-e^{-r \cosh \theta+\pi i \alpha}}\right),
\end{aligned}
$$

where $r=2 \pi m R$. With this we have:

$$
\left\langle\Phi_{\alpha}(0)\right\rangle_{R} \sim e^{-\frac{1}{b^{2}} \mathcal{A}^{\mathrm{cl}}}
$$

3. Hamiltonian approach

Consider the Hamiltonian picture with time going along the cylinder, and space along Γ (Matsubara). Then

$$
\left\langle\Phi_{\alpha}(0)\right\rangle_{R}=\langle\Psi| \Phi_{\alpha}(0)|\Psi\rangle
$$

where Ψ is the ground state corresponding to the maximal eigenvalue of the Matsubara transfer-matrix.

4. Classics

Sinh-Gordon equation is equivalent to the zero-curvature condition for the connection:

$$
\begin{aligned}
& L=\partial_{z}+\frac{1}{4} \partial_{z} \phi \sigma^{3}-\lambda \frac{m}{2}\left(e^{\phi} \sigma^{+}+e^{-\phi} \sigma^{-}\right), \\
& \bar{L}=\partial_{\bar{z}}-\frac{1}{4} \partial_{\bar{z}} \phi \sigma^{3}-\frac{1}{\lambda} \frac{m}{2}\left(e^{\phi} \sigma^{-}+e^{-\phi} \sigma^{+}\right) .
\end{aligned}
$$

We construct the monodromy matrix:

$$
M(\lambda, z)=P \exp \int_{z}^{z+2 \pi i R}(L d z+\bar{L} d \bar{z})=\left(\begin{array}{ll}
A(\lambda) & B(\lambda) \\
C(\lambda) & D(\lambda)
\end{array}\right) .
$$

Its trace $T(\lambda)=\operatorname{Tr} M(\lambda, z)$, does not depend on z, this is the generating function of integrals of motion. The matrix elements of $M(\lambda, z)$ are single-valued functions on the hyper-elliptic curve of infinite genus:

$$
T(\lambda)=\mu+\frac{1}{\mu}
$$

Separated variables. Zeros of the function $B(\lambda)$ are real. We order them and denote by $\lambda_{j},-\infty<j<\infty$. These zeros depend on y. They either oscillate inside the zones $|T(\lambda)|>2$ or stay at double points $|T(\lambda)|=2$. The variables $\log \lambda_{j}$ and $\log \mu_{j}$ are canonical:

$$
p d q=\sum_{j=-\infty}^{\infty} \log \mu_{j} d \log \lambda_{j} .
$$

Consider zeros of $T(\lambda)\left(\tau_{j}\right)$ as one half of coordinates on the phase space. Then we have for Liouville measure

$$
(d p \wedge d q)^{\wedge \frac{\infty}{2}}=\prod_{j=-\infty}^{\infty} \frac{1}{\mu_{j}-\mu_{j}^{-1}} \prod_{i<j}\left(\lambda_{i}^{2}-\lambda_{j}^{2}\right) \bigwedge_{j=-\infty}^{\infty} d \log \lambda_{j} \bigwedge_{j=-\infty}^{\infty} d \tau_{j} .
$$

It is convenient to switch to the variables $\theta_{j}=\log \lambda_{j}$.
Now everything is prepared for writing the semi-classical expression for the matrix elements of an operator $\mathcal{O}\left(\left\{\theta_{j}\right\}\right)$. There is a cohomological argument for considering only this kind of operators.

We have

$$
\left\langle\Psi_{1}\right| \mathcal{O}\left|\Psi_{2}\right\rangle=\int \prod_{j=-\infty}^{\infty} d \theta_{j} \prod_{j=-\infty}^{\infty} Q_{1}\left(\theta_{j}\right) Q_{2}\left(\theta_{j}\right) e^{\frac{1}{b^{2}} 2 j \theta_{j}} \prod_{i<j} \sinh \left(\theta_{i}-\theta_{j}\right),
$$

where

$$
Q\left(\theta_{j}\right) \simeq \frac{1}{\left(\mu_{j}-\mu_{j}^{-1}\right)^{\frac{1}{2}}} \exp \left\{\frac{1}{i b^{2}} \int^{\lambda_{j}} \log \mu d \log \lambda\right\} .
$$

We consider the simplest case when both $\Psi_{1,2}$ are the ground state. For this case

$$
\mu=e^{\frac{1}{2} m R\left(\lambda-\lambda^{-1}\right)}
$$

which implies

$$
Q(\theta) \simeq \frac{1}{(\sinh (m R \sinh \theta))^{\frac{1}{2}}} e^{-\frac{1}{b^{2}} m R \cosh \theta} .
$$

For the operator \mathcal{O} we take

$$
\Phi_{\alpha}(0)=e^{\frac{1}{b^{2} \alpha} \sum \theta_{j}} .
$$

This gives the semi-classical approximation of our original formula.
The exact quantum formula can be considered as a result of Sklyanin's quantisation in separated variables. The function $Q(\theta)$ satisfy the requirements formulated above. The following formula fixes ρ in the asymptotics:

$$
\rho=\frac{4 \nu}{\sqrt{\pi(\nu-1)}} \Gamma\left(1-\frac{1}{2 \nu}\right) \Gamma\left(\frac{1}{2}+\frac{1}{2 \nu}\right) \cdot \frac{(\mu \Gamma(\nu))^{\frac{1}{\nu}}}{\sqrt{\nu-1}} R .
$$

The formula for $\mathcal{A}^{\mathrm{cl}}$ is obtained by the steepest descend method.

5. Exact computation in quantum case

We had the equation

$$
Q\left(\theta+\frac{\pi i}{2}\right) Q\left(\theta-\frac{\pi i}{2}\right)-Q\left(\theta+\frac{\pi i(\nu-2)}{2 \nu}\right) Q\left(\theta-\frac{\pi i(\nu-2)}{2 \nu}\right)=1,
$$

which can be thought about as a discrete Liouville equation.
It is convenient to introduce the function $\epsilon(\theta)$ via

$$
e^{-\epsilon(\theta)}=Q\left(\theta+\frac{\pi i(\nu-2)}{2 \nu}\right) Q\left(\theta-\frac{\pi i(\nu-2)}{2 \nu}\right)
$$

The fundamental role for the computation of the one-point functions is played by the function $\omega\left(\theta, \theta^{\prime}\right)$ which is a "Green function" for the linearised equation with a twist α.

Consider the linear operator:

$$
\begin{aligned}
\left(\mathcal{D}_{\alpha} f\right)(\theta) & =\left(1+e^{\epsilon(\theta)}\right)\left(f\left(\theta+\frac{\pi i}{2}\right)+f\left(\theta-\frac{\pi i}{2}\right)\right) \\
& -e^{\pi i \alpha} f\left(\theta+\frac{\pi i(\nu-2)}{2 \nu}\right)-e^{-\pi i \alpha} f\left(\theta-\frac{\pi i(\nu-2)}{2 \nu}\right) .
\end{aligned}
$$

The function $\omega\left(\theta, \theta^{\prime}\right)$ satisfies the equations:

$$
\mathcal{D}_{\alpha} \omega=\omega \mathcal{D}_{-\alpha}=f,
$$

where f is a " δ-function": $f\left(\theta-\theta^{\prime}\right)=\frac{1}{2 \pi \cosh \left(\theta-\theta^{\prime}\right)}$.
This function allows the asymptotical expansion $\theta \rightarrow \epsilon \infty, \theta^{\prime} \rightarrow \epsilon^{\prime} \infty$:

$$
\omega\left(\theta, \theta^{\prime}\right) \simeq \sum_{j, k=1}^{\infty} e^{-\epsilon(2 j-1) \theta-\epsilon^{\prime}(2 k-1) \theta^{\prime}} \omega_{2 j-1,2 k-1}
$$

Main conjecture. We claim that

$$
\frac{\left\langle\Phi_{\alpha-2 \frac{\nu-1}{\nu}}(0)\right\rangle}{\left\langle\Phi_{\alpha}(0)\right\rangle}=C(\alpha)\left(1+\frac{2 \sin \pi\left(\alpha+\frac{1}{\nu}\right)}{\pi} \omega_{1,-1}\right)
$$

where

$$
C(\alpha)=(\boldsymbol{\mu} \Gamma(\nu))^{4 x} \frac{\Gamma(-2 \nu x) \Gamma(x) \Gamma(1 / 2-x)}{\Gamma(2 \nu x) \Gamma(-x) \Gamma(x+1 / 2)}, \quad x=\frac{\alpha}{2}+\frac{1-\nu}{2 \nu}
$$

Moreover, using $\omega\left(\theta, \theta^{\prime}\right)$ one can write down a formula for the normalised to Φ_{α} one-point functions of all the descendants of operators $\Phi_{\alpha+2 m \frac{\nu-1}{\nu}}$.

6. Checking classical case

In classical case $\nu=1$, and $1+e^{\epsilon(\theta)}=e^{r \cosh \theta}$. Hence

$$
\begin{aligned}
& \omega\left(\theta+\frac{\pi i}{2}, \theta^{\prime}\right)\left(1-e^{-r \cosh \theta-\pi i \alpha}\right)+\omega\left(\theta-\frac{\pi i}{2}, \theta^{\prime}\right)\left(1-e^{-r \cosh \theta+\pi i \alpha}\right) \\
& =\frac{e^{-r \cosh \theta}}{2 \pi \cosh \left(\theta-\theta^{\prime}\right)}
\end{aligned}
$$

This can be easily solved. The equivalence to Lukyanov's formula reduces to the identity

$$
1-\frac{2 \sin \pi \alpha}{\pi} \omega_{1,-1}=\exp \left(\frac{1}{\pi i} \int_{-\infty}^{\infty} \log \left(\frac{1-e^{-r \cosh \theta+\pi i \alpha}}{1-e^{-r \cosh \theta-\pi i \alpha}}\right) d \theta\right)
$$

The proof is an exercise on Riemann-Hilbert problem.

7. Comparison with the Liouville three-point function

Conformal limit corresponds to $R \rightarrow 0$. In this limit we should be able to make comparison with the Liouville model with the central charge $c=1+6 Q^{2}, Q=b+1 / b$.
There is a huge region in the configuration space where only the dynamics of the zero-mode counts. We have the $Z Z$ quantisation condition
$\frac{2 P}{b} \log \left(R^{1+b^{2}} \boldsymbol{\mu} \Gamma\left(b^{2}\right)\right)=-\frac{\pi}{2}(1+2 n)+\operatorname{Im} \log (\Gamma(1+2 i P / b) \Gamma(1+2 i P b))$,
which defines P as a function of R. The relation between shG one-pint functions and Liouville three-point functions reads:

$$
\left\langle\Phi_{\alpha}(0)\right\rangle_{R} \simeq \mathcal{N}(P(R)) \cdot C(Q / 2-i P(R), a, Q / 2+i P(R)), \quad R \rightarrow 0
$$

(recall $a=Q \alpha / 2$).
This can be checked numerically.

8. More mysterious relation to Liouville

Following Al. Zamolodchikov consider the discrete Liouville equation:

$$
X(u+1, v) X(u-1, v)-X(u, v+1) X(u, v-1)=1 .
$$

The continuous case is obtained by $u=m, v=n, x=\Delta m, y=\Delta n$,

$$
X(m, n)=\Delta^{-1} e^{-\frac{1}{2} \phi(x, y)} .
$$

Obviously, the equation

$$
Q\left(\theta+\frac{\pi i}{2}\right) Q\left(\theta-\frac{\pi i}{2}\right)-Q\left(\theta+\frac{\pi i(\nu-2)}{2 \nu}\right) Q\left(\theta-\frac{\pi i(\nu-2)}{2 \nu}\right)=1,
$$

is obtained by the reduction:

$$
X(u, v+1)=X\left(u+\frac{\nu-2}{\nu}, v\right),
$$

rescaling $\theta=\frac{\pi i}{2} u$, and omitting the redundant variable v. This relation
remains a mystery to which we add one more.

Varying the discrete Liouville equation we obtain the linear opetrator:

$$
\begin{aligned}
(\mathcal{D} f)(u, v) & =\left(1+\frac{1}{X(u, v+1) X(u, v-1)}\right)(f(u+1, v)+f(u-1, v)) \\
& -f(u, v+1)-f(v, v-1) .
\end{aligned}
$$

The operator \mathcal{D}_{α} which enters the definition of $\omega\left(\theta, \theta^{\prime}\right)$ is obtained by the reduction:

$$
f(u, v+1)=e^{\pi i \alpha} f\left(u+\frac{\nu-2}{\nu}, v\right) .
$$

What is the meaning of all that?

9. Thermodynamic Bethe Ansatz

Using the definition

$$
e^{-\epsilon(\theta)}=Q\left(\theta+\frac{\pi i(\nu-2)}{2 \nu}\right) Q\left(\theta-\frac{\pi i(\nu-2)}{2 \nu}\right) .
$$

rewrite q-Wronskian equation as

$$
Q\left(\theta+\frac{\pi i}{2}\right) Q\left(\theta-\frac{\pi i}{2}\right)=1+e^{-\epsilon(\theta)} .
$$

Together with asymptotics and absence oz zeros it means

$$
\log Q(\theta)=-\rho \cosh \theta+\int_{-\infty}^{\infty} \frac{1}{2 \pi \cosh \left(\theta-\theta^{\prime}\right)} \log \left(1+e^{-\epsilon\left(\theta^{\prime}\right)}\right) d \theta^{\prime}
$$

This implies the TBA equation

$$
\epsilon(\theta)=2 \pi R m \cosh \theta-\int_{-\infty}^{\infty} \log \left(1+e^{-\epsilon\left(\theta^{\prime}\right)}\right) \Phi\left(\theta-\theta^{\prime}\right) d \theta^{\prime} .
$$

Kernels:

$$
\begin{aligned}
& \Phi\left(\theta, \theta^{\prime}\right)=\Phi_{0}\left(\theta, \theta^{\prime}\right) \\
& \Phi_{\alpha}(\theta)=\frac{e^{i \pi \alpha}}{2 \pi \cosh \left(\theta+\pi i \frac{\nu-2}{2 \nu}\right)}+\frac{e^{-i \pi \alpha}}{2 \pi \cosh \left(\theta-\pi i \frac{\nu-2}{2 \nu}\right)}
\end{aligned}
$$

Denote by $*$ the convolution withe measure

$$
\frac{d \theta}{1+e^{\epsilon(\theta)}} .
$$

Then

$$
\omega=f * f+f * R_{\mathrm{dress}, \alpha} * f,
$$

where the resolvent satisfies the equation

$$
R_{\mathrm{dress}, \alpha}-\Phi_{\alpha} * R_{\mathrm{dress}, \alpha}=\Phi_{\alpha} .
$$

