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1. Integral representation of the one-point function

My final goal is to compute the following infinite-fold integral:

(®a(0))r

J=—00 J]=—00 1<)

where

the function Q(6) is defined by three requirements.
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® Quantum Wronskian equation
QO+5)Q(0— %) — QO+ =5)Q(0 - =572) = 1.
® Asymptotics
logQ(#) = —pcoshd + O(1), 6 — +oo.

® Ground state: no zeros in the strip [Im(0)| < .

For the final formula to be applicable only the first requirement really count,

two others may be eased considerably.
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2. Meaning of the integral, semiclassical consideration
Consider the sinh-Gordon model with the action:

2 dz N\ dz

coshib(z,2)) | 5

A= /{ 0.,0(2,2)05p0(z,2) + .2“

sin b2
on the cylinder
C=C/2niR Z.

Then the main integral gives the SoV representation of the functional
Integral

(Pn(0) R —/ —Atap(0) H Dp(z, %),

z,zeC

with the convention
1
a= 5(1) +b Ha.
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For the sake of classical limit 4 = b2 — 0 it is convenient to introduce
¢(z,Z) = bp(z, zZ). Then the classical action is

wdz N\ dz
2 9

1

T an

A / { [8z¢(z, Z2)0sp(z, Z) + 2m>? cosh(¢(z, Z))}

2 . . . ..
where m? = p? 2828 is semi-classically finite.

The main contribution to the functional integral is given by regularised
action evaluated on the classical solution

m

0,0:0% (2,2) = B sinh ¢%(z, 2) ,
rapidly decreasing at infinity, and possessing the singularity at 0:

oz, 2) ~ 2alog|z|, z—=0.
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This can be computed (Lukyanov):

) 50 -, 2
L a m dt (sinh®(at) «o° o,
1 g (M) S
A =5 loe () F /0 l (tsinh(zt) 2 ¢
o o0 46 1 — e T cosh 8 —mic
—/dO& z_mlog (1 _e—rcoshH—Fﬂ"ia) ’
0

— OO

where r = 2mmR. With this we have:

(@0 (0)) g ~ e 5247
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3. Hamiltonian approach

Consider the Hamiltonian picture with time going along the cylinder, and
space along I' (Matsubara). Then

<(I)oz(0)>R — <\Ij‘q)oz(0)‘\p> 9

where V¥ Is the ground state corresponding to the maximal eigenvalue of

the Matsubara transfer-matrix.
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4. Classics

Sinh-Gordon equation is equivalent to the zero-curvature condition for the
connection:

1
L=0,+ Z(‘?nga‘g — A% (6¢0+ + 6_%_) ;
L=0.— 1 _po> — 1m (ecbg— + €—¢O+)
47 A2

We construct the monodromy matrix:

z+2mi R

_ 7o _ (AQ) B
M(\, z) = Pexp / (Ldz 4+ Ldz) = (C’()\) DN
Its trace T'(\) = TrM (), z) , does not depend on z, this is the generating
function of integrals of motion. The matrix elements of M (), z) are

single-valued functions on the hyper-elliptic curve of infinite genus:

1
T()\) — 1+ ; . .—p.8/20



Separated variables. Zeros of the function B(\) are real. We order them
and denote by \;, —oo < j < oo. These zeros depend on y. They either

oscillate inside the zones |T'(\)| > 2 or stay at double points |[T'(\)| = 2.
The variables log A; and log 1, are canonical:

pdg= Y logujdlogh; .

J=—00
Consider zeros of T'(\) (7;) as one half of coordinates on the phase
space. Then we have for Liouville measure

oo

(dpndg)"F = J] — _1H)\2 \2) /\ dlog \; /\ dr; .

j=—oo M3 T i< im0 it oo

It is convenient to switch to the variables 0; = log \;.
Now everything is prepared for writing the semi-classical expression for
the matrix elements of an operator O({6;}). There is a cohomological

.—p.9/20

argument for considering only this kind of operators.



We have

[01w2) = [ T] d8; T[ Qu(6)Qa(0))e*" T[sinn(6; ~ 6,),

J=—00 Jj=—00 1<
where
Aj
Q(6;) ! § { ! /log dlog)\}
) 1 XPy &5 v .
T (gt L

We consider the simplest case when both ¥, 5 are the ground state. For

this case

1= G%mR(A—A_l)

Y

which implies

1 — L mR cos
Q(Q) R h¢9.

~ e b2

(sinh(mR sinh §))

N[ =
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For the operator O we take
D, (0) = e X0,

This gives the semi-classical approximation of our original formula.

The exact quantum formula can be considered as a result of Sklyanin’s
quantisation in separated variables. The function Q(0) satisfy the
requirements formulated above. The following formula fixes p in the
asymptotics:

_ dv 1 1, 1 _(NF(V))%
p_\/w(y—l)r(l 2V>F(2+2V> \/ﬁR‘

The formula for A°! is obtained by the steepest descend method.
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5. Exact computation in quantum case

We had the equation

QUO+5)Q(0 - %) - Q0+ =52)Q(0 - =572 = 1.

which can be thought about as a discrete Liouville equation.
It is convenient to introduce the function ¢(0) via

e—€(0) — Q(9 4 7T’L(V 2))@(9 _ W) .

The fundamental role for the computation of the one-point functions is
played by the function w(#, #") which is a "Green function" for the
linearised equation with a twist «.
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Consider the linear operator:

(Daf) (0) = (1+e7) (J0+ F) + [0 - F))
. Wzaf(9_|_ 7'("L(I/ 2)) —Wzaf( - 7Tz(u 2))

The function w(6, #’) satisfies the equations:

Dyw=wD_, =f,

where f is a “d-function”: f(0 — 0') = 5 5=97 -

This function allows the asymptotical expansion 6 — oo, 8/ — €¢’00 :

oo

CU(H, 9/) ~ Z 6_6(2j_1)0_6/(2k_1)0/w2j_1,2k_1 .

7,k=1
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Main conjecture. We claim that

where

B 1o L(—2vz)l(z)'(1/2 — )
Cla) = (pl'(v)) I'Qua)l(—z)(x+1/2)°

Moreover, using w(f,0’) one can write down a formula for the normalised

to @, one-point functions of all the descendants of operators @, ., »-1.

.—p.14/20



6. Checking classical case
In classical case v = 1, and 1 + e€(?) = grcosh® Heance

w(e + %z" 9/) (1 o e—rcoshG—Wia) 4+ w(e o %z" 9/)(1 o 6—rcosh0—|—7rioz>

e’ cosh 6

" 27 cosh(6 — 0)

This can be easily solved. The equivalence to Lukyanov’s formula reduces
to the identity

9 g 1 00 1 —e " cosh 0+mic
1 — SlIlT('OAWL_l — exp (—/ log ( ¢ - ) d@) .
T L 1 — e—Tcoshb—mic

The proof is an exercise on Riemann-Hilbert problem.
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7. Comparison with the Liouville three-point function

Conformal limit corresponds to R — 0. In this limit we should be able to
make comparison with the Liouville model with the central charge

c=1+6Q% Q=0b+1/b.
There Is a huge region in the configuration space where only the
dynamics of the zero-mode counts. We have the ZZ quantisation condition

2P 2
— log (Rl+b uF(b2)) = —g(l + 2n) 4+ Imlog (I'(1 + 2¢P/b)['(1 + 2:Pb))

which defines P as a function of R. The relation between shG one-pint
functions and Liouville three-point functions reads:

(20 (0))r 2 N(P(R)) - C(Q/2 —iP(R), a, Q/2+iP(R)), R—0,
(recall a = Qa/2).

This can be checked numerically.
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8. More mysterious relation to Liouville

Following Al. Zamolodchikov consider the discrete Liouville equation:

Xu+1,v)X(u—1,v) — X(u,v+ 1) X(u,v—1)=1.
The continuous case is obtained by u = m, v =n, t = Am, y = An,
X(m,n) = A~lemz0@y)
Obviously, the equation
QU +3)Q(0-5) - QU+ =50 - =52) =1,
IS obtained by the reduction:

X(uv+1) = X(u+52,0).

rescaling § = Ztu ., and omitting the redundant variable v. This relation

2

remains a mystery to which we add one more.
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Varying the discrete Liouville equation we obtain the linear opetrator:

1
(Df)(u;v) = (1 i X(u,v+ 1) X(u,v—1)

— fu,v+1)— f(v,v—1).

)(f(u+1,v)+f(u—1,v))

The operator D, which enters the definition of w(#, 6’) is obtained by the
reduction:

Fluv+1) = €™ flu+ 52 0).

What is the meaning of all that?
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9. Thermodynamic Bethe Ansatz

Using the definition
e = Q0+ "5H)Q0 - 5.
rewrite g-Wronskian equation as

QIO+ T)Q(O— ) =1+ 9.

Together with asymptotics and absence 0z zeros it means

oo

1 ,
loe O(0) = —pcosh 6 1 (1 —€<9>) o’ .
0g Q(0) peosho / 27 cosh(6 — 6') st Te

— OO

This implies the TBA equation

€(0) = 2rRm cosh § — / log (1 + 6_6(9/))(13(9 —0")db'" .

— OO
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Kernels:

®(6,0") = Dy(0,0"),
1T e—iﬁa

e
— + .
2w cosh(0 + mi%-2) 2w cosh(0 — mi%2)

Do (0)

Denote by * the convolution withe measure

do
1+ e<(0) -

Then
w:f*f+f*Rdress,a*fa

where the resolvent satisfies the equation

Rdress,a — (I)oz * Rdress,a — (I)oz .
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