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Definition of SU calar product

Some notation

o We use boldface, with a subscript, to denote a set and its cardinality:

wm:{xlv'”:xm}a yn:{y17~~~7yn}

Sometimes the subscript can be omitted when the cardinality is clear from context,
e.g. Tm = .

o Omission of an element is indicated by a circumflex and an additional subscript:

T, ={T1,.. ., i1, Tit+1,---, Tm}, YUnj ={Y1, - Yj—1,Yj+1s-- - Yn}

At times we keep only the subscript of the omitted variable, e.g. Zy,,; = ;.

o We use @ to denote a union of sets:

Tm @ Yn = {21, ., Zm} ©{y1,.. ., yn} ={T1,. .., Tm, Y1, ., Yn}

We use © to denote exclusion of a subset:

{x17"'71‘m7y17"'7yn}6yn ={x1,...,xm}
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Definition o

Useful functions

o We define three types of rational function:

z—y+1 1
flz,y) = ———, g(z,y) = ——, h(z,y) =z —y+1
z—y r—y

o When these functions take a set as an argument, a product over all elements in the
set is implied:

f@oyn) =] @), f@my) =]]F@inv),  f@mun) =[] 1] f@iv)
j=1 i=1 i

o Combining all of this notation, we have (for example)

g ) T f(w,y))
TTroy f(w, 2)

which is well defined, even if z, is not a subset of &y ® ym.

fw, @y ® ym S zn) =
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Definition of SU calar product

SU (3)-invariant models
o The SU(3)-invariant R-matrix is given by

1
Rgug(k,u) =
FA, p) 0 0 0 0 0 0 0 0
0 1 0 g(X, p) 0 0 0 0 0
0 0 1 0 0 0 g(x, w) 0 0
0 FICSD) 0 1 0 0 0 0 0
0 0 0 0 FOA, 1) 0 0 0 0
0 0 0 0 0 1 0 g(A, 1) 0
0 0 FICD) 0 0 0 1 0 0
0 0 0 0 o a(n, ) 0 1 0
0 0 0 0 o 0 0 0 FOuw) /g
e The SU(2)-invariant R-matrix is given by
Fx, m) 0 0 0
(2) — 0 1 g(x, 1) 0
Ryghm) = 0 FICNID) ‘ 1 0
0 0 o FOum g

o The entries of either R-matrix have the graphical representation

s
n taja ; ;
[R((lﬁ)(/\vﬂ)]. % =\ da Jo
isds
is
o
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Definition of SU(3) scalar product

SU (3)-invariant models
o Consider a family of operators, grouped in the monodromy matrix
) Tii(A)  Ti2(A) Tis(N)
Ta ()\) = Tgl()\) Tho ()\) Ta3(N)
T31(A)  Ts2(\)  Tz3(N)
whose commutation relations are prescribed by the bilinear relation

RO T TN (1) = T ()T (VR (O, )

o Construct Hilbert spaces H and H* by assuming the following action of the
operators on pseudo-vacuum states |0) and (0

Ti(M[0) = a;(N)[0),  Ti;(M)|0) =0, Tj(A)]0) #0

(0T (A) = ai(A)(0l,  (0[Tk;(A) #0, (0|Tjx(A) =0

o The Bethe Ansatz allows us to find the eigenvectors and eigenvalues of the transfer
matrix:

3
T =Y Tre(N)
k=1
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Definition of SU(3) scalar product

Nested Bethe Ansatz [Kulish, Reshetikhin 83] [Belliard, Ragoucy 08]

o Take the monodromy matrix

Tll()\) 7112()\) 'lvlfi(/\>
T(SLI)(A) = T2a(A) To2(N) Tasz(N)
T31(A)  Ts2(A)  Ts3(N)

«
and break it into sub-matrices:
M) ny = [ T21 () D (xy = [ Tao(x)  Tra(n) (1) 4y _ [ Taa(N)  Ta3(N)
By (A),[ T30 (N) L CLV/(N) = Ti2(N) ri3(™) ], Dy ()\)7{ Tas(N)  Tag(n) |

o Repeat this for the SU(2)-type monodromy matrices below:

T (ulre, - M) = DS ()RS (1 20) - RS2 (1, 21)

_ ( AP (ulg, oA O (g, ) >
5

B@ (ulrg, .. A1) D@ (p|Ag, .o, M)
T s M) = RE) (1 2e) - R, (1, 0) DSV ()
_( A<2)()\277)\1|M) (/V[jz)(\)\( """" )\l‘:“) >
B(2)(/\f7"'>/\1|/‘) D<2><)‘l¢~~'>)‘1lﬂ) s
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Definition of SU calar product

Off-shell Bethe vectors

o Following the nested Bethe Ansatz, one proposes that the states in H

W) = [Ag, ) = CH ) O CP (1) . P (11)]0) @ | frar)

are eigenvectors of the transfer matrix. We refer to these as off-shell Bethe vectors.
o The vector | fa) = ®%_;| 1)a, is needed to fully contract out the vector spaces V&

o The Bethe vectors admit a convenient graphical representation:

|0> 2 2 2 2
) 2 3

@ (pm) wm

2 3
(2) 2 3
(k) m1
<';“/‘\\/ A o J

! J

! J

/
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Definition of SU calar product

Off-shell dual Bethe vectors

o Similarly, one proposes that the states in H*

(U] = (B, Al = (o | @ OB (1) ... B () B (1) ... B (A)

are eigenvectors of the transfer matrix. These are off-shell dual Bethe vectors.
o The vector (o | = ®Y_; (1 |o; is present to contract out the vector spaces Va, .

o The dual Bethe vectors have a similar graphical representation:

b Y BSQ(M)
1
i
1
(" 1 1
a BE) o
3 : wm B (i)
3 2
3 2 n1 B (uy)

o
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Definition of SU(3) scalar produc

Bethe equations and on-shell states

o In order to obtain genuine eigenstates of the transfer matrix, one imposes the
Bethe equations on the sets Ay and pm

71(A)f

L m
H(Ak—/\l—l)l—[(uk—k +1>’ iy
img \Ae = A+ 1/ 0 N g — A

¢

uj—uk—1> ( '_)\k+1> .
r : s 1<j<m
slug) = 0 13( w1 J

7)\k

o For the purpose of future calculations, it is useful to introduce the functions

61<”‘>\zyum) =1+r1(z/)ij1( Ky 7V )ﬁ(AiVJrl)

pj—v+1/) 25\ AN —v—1
¢ ) e (v —
pulirnn) =1 I (55520 1T (=)

o In terms of these, the Bethe equations are simply

B1 </\¢

):o, V1<i</l and ﬁg(ujjxg,um>=o, V1<j<m.

Michael Wheeler
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Definition of SU(3) scalar product

Bethe equations and on-shell states
o Also for later convenience, let us re-normalize the Bethe vectors and the transfer
matrix:

<“/m>>‘f‘
F(pms Ae)az(Xe)az(pm)

— |)‘€>H’m>
f(uvm Ae)az(Aeg)az(pm)

) <<l1"m.7 Aé ” =

o Assuming that the Bethe equations hold, the Bethe vectors that we have defined
become eigenstates of the transfer matrix:

TN ) = A(2[Aes o I 1) Gt AelIT(2) = A (2| A pim ) Cpims A
o The eigenvalue, which is the same for both on-shell Bethe vectors and their duals,
is given by

m

4 4
A(z[xe i) =r@ [T Fw2) + [T £ (o3 TT 7015 2) 4 s2) T 7o)
=1 =1

Jj=1 Jj=1
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Definition of SU calar product

SU (3) scalar product
o The scalar product of the model is simply defined as

SZ m(/‘“rru)‘i ‘A[ 7“’m) - <<H"m_7)‘i Il}‘(’ 7/"7n>>

|0) 2 2 2 2
G 2 3
m
2 3
/’(l‘ 2 3
c 1
\1
r 000
L J
AL J
B
A
£
( 1
( 1
——
7
3 2 B
Hm
3 2
3 2 B
KT
2 2 2 2 <0|

e In what follows, we are interested in the case where AZ ,um are Bethe roots, and
>‘£ ,p,m are free. We refer to this as the on/off-shell scalar product.
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Definition o 3 product

SU (3) scalar product (SU(2) as a special case)

o The cases £ =0 and m = 0 correspond to an SU(2) scalar product, where the
answer was found in determinant form in [Slavnov 89]:
5. det {s/rm. ,\B\Aﬁ‘w} 5 . det {s;(uB,muff)}
Se,0@ AL A 0) = ———F— = SomWn, 00, p,) = ——
AAB)X(XC) A(uB)A ()

@ The functions within these determinants are defined to be

¢ ¢
. 1
S/(@)\B\)\E):W TI(A?)H(AE*A?JFD*H()\kB*)‘icfl)
g k#j k#j
1 m m
S;(MB,(D\uf)=m [Tk = nf +1) = raud) [T —uf —1)
i TH kg k]
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Definition o

e We introduce generalizations of these functions:

S;(uB,\B AE) =

1 m //{’) o /\f’ 4 14
B O (] <’]/\(v1 [TOZ =2+ -T]OF -2 -1
J i k=1 \Fk i ktj ktj
S5 (B, AP ) =
1 m 4 )\B m 5 o
——— | [Tw# —uf +1) =) ]] 7“ [T —nf -1
Hy B\ %y k=1 festj
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Multiple in al formulae

Multiple integral expressions [MW 13]

o Define the extended Slavnov-type determinant

(A7) -

S1(uB ABING) o Sp(uB ABINE) | g(z1,0E) - g(zm, AD)

Sl(V'BaABP‘[C) SE(IJ'Bv)\Bp‘eC) 9(1’17)\(0) g(xmyA[C)
det

S1(wB ABuP) o Se(wB AB ) | g(z,uf) - g(@m, pd)

S1(pwB ABIWB) o Se(uB ABuB) | gz, pwB) o g(@m,pb)

XAB)YA(AC @ uB)
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Multiple integral formulae

Multiple integral expressions [MW 13]

o The scalar product of an on-shell dual state (B, AB|| and an off-shell state
IAC, uC€) is given by the multiple integral formula

Se,m (BB, ABINC u€) =

7{ dm Gym f @f d S(HB,AB‘AC‘w)g(uc,y)X(y)X
X1 v

2T Sy, 2w 27 Jy, 2mi

[T 9@r yi)h(@r, Xi)h(Ye, yi)

Pt 9(zk, nf) 9k, ) ) gl BP)

<51($kaVYk) B 53(kak7Yk)> 9y, nB)
e X and Y} denote the sets
X=X opp oz, Yi=pSoul oy

o The integration contours surround the points

X, DAG @ uB, Vi D S
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Multiple in al formulae

Multiple integral expressions [MW 13]

o Define another extended Slavnov determinant:

S/<“B7>\B’“C‘y>:

g1, AB) o gy, AB) | S{(uB ABINE) . S (uB,AB|AD)

gy, AE) o gwe, AB) | S{(B ABINE) - S (wB ABINE)
det

gy, 1) o glye,nf) | S{(BABE) o SL (B ABLE)

gy, uS) o gwe,nS) | S{B ABILG) o ShL (B ABLS)

R(uB)K(uC @ AB)
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Multiple in al formulae

Multiple integral expressions [MW 13]

o The scalar product of an on-shell dual state (B, AB|| and an off-shell state
IAC, 1€ is also given by

Slgm(P‘B7 >‘B|>‘C7 IJ‘C) =

7{ @7{ @f‘ dml% dyl S/ B AB‘MC‘y> x, )\C)A(m)
k) 27 Ve 211 X1 21 V1 21

<51($ka,Yk) B 53(yk|Xk7Yk)> 9P, )

¢
9(xr, yr)h(zr, Xi)h(Yi, yi) 5
[ gz, AP) 9(yi, AB) g AR, uk)

k=1

o X} and Y} denote the sets
Xy =AF o AB  oxy_, Y. =uS @B oy
e The integration contours surround the points

X, DAS, Yo uS orP
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Proof of formulae

Sum formula for SU(3) off/off-shell scalar product [Reshetikhin 86]

o Reshetikhin discovered a sum formula for the SU(3) scalar product, in the
off/off-shell case:

B ,B c ,c B ,B,C C B C,C B c B,B C
FWB AP F (S A S0 m (B AP NG, 1) =37 Z(N T wT AT BT ZOT, 1T AL, 117 ) X

FAEAD IR AP T v fuf  wi) f e A F (A ri AP )i A rs (uf)ra(u])

o The sum is taken over all partitions of the variables into disjoint subsets:
=A@ G, AB=AB@AB, suchthat |AB|=|AC|, AB|=|A9
ne = F’I @Nllv n? = IJ‘I @F’Hv such that |N1 | = “"'I l “"'II | = |N11 |

o This formula generalizes one found in [Korepin 82] [Izergin, Korepin 84] for
SU (2)-invariant models. By taking either of the cardinalities £ or m to be zero, we
recover that earlier result.

@ We can go to the on/off-shell scalar product easily:

. B B B
)\F\f()\l JA )f(#BaMB% r(uB) = (= )Wl \f(u S HT)

JAAT A ) Fw=pr) . B (B
J(ABAP) F(aP uBy BT

ri(AP) = (—)!
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Proof of formulae

Sum formula for SU(3) off/off-shell scalar product [Reshetikhin 86]

o Unfortunately, the function Z is itself a non-trivial object. In [Reshetikhin 86| it
was defined as the partition function below:

1 1 1 1 1 2 2 2 2
Ap 1 2
1 2
1 2
1 2
Z(Aes pm|we, vm) = 21 2
Ky 3 2
3 2
3 2
L 3 2
2 2 2 2 2 3 3 3 3
wy wy vy vm

@ More recently [MW 12| [Belliard, Pakuliak, Ragoucy, Slavnov 12|, it was calculated
as a sum over trilinear products of domain wall partition functions.

SU(3) on/off-shell scalar product as multiple integral



Proof of formulae

Properties of the SU(3) off /off-shell scalar product [Reshetikhin 86]

o Despite its complicated form, the off/off-shell scalar product has simple recursive
behaviour at some of its poles:

111[1 {(#m :U‘m)sl m(/“‘m?AZ |)‘Z ,,Ltm)} -

l ’VVL_)ll

H,B;,,"H

(T3(.U‘gl) _7‘3(:“m ) H f Moy g )f Moy g )Szlfndyi) (Nﬁ—lvAf‘A?’“gfl>

@ The smaller scalar product is modified by scaling its variables rq,r3:

B C
Tl( ) yel""mflea“’mfl

fy, 1)
fuy)’ ri@ =

ra() = () fp,x)’ B &\ C
TEANS DA

o Due to symmetry, a similar relation holds for equating any pair u? = uf.

o The scalar product is analytic at the points uc = )\B

lim ¢ _\B)s B ABIAS uS)l =0
im0 = A ) St (i XA D}
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Proof of formulae

Expectation value of the transfer matrix (acting on on-shell state)

@ To derive a recursion relation for the on/off-shell scalar product (without
specializing any of its variables), we consider the quantity

Sem(2) = (uh AP ITR)IAL , 1)

o Since (2, AP is on-shell, we can easily compute the action of the transfer matrix

when it acts left:

Sﬁ,’m(z) ( IAB B)(/p’m ABHA[ 7l'l/m>>

o Calculating the residue of Sy ,,(2) at z = uZ, we obtain
€s,_,B {Sgym(z)} = lim {(z - uﬁ)S/g’m(z)} =
m z—puB

L

r3(2) H by - H FuZ nB) T F b, AP) | Se,m (B, ABAC, u©)

j=1 i=1

Jj=1

SU(3) on/off-shell scalar product as multiple integral
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Proof of formulae

Expectation value of the transfer matrix (acting on off-shell state)

o Now let us calculate the same quantity
c

St,m(2) = (i AP ITIAL , 157)
but by acting on the off-shell state, instead.
o To perform this calculation, we use formulae found in [Belliard, Pakuliak, Ragoucy,
Slavnov 13]:
T, ) = Az, w)[IX, 1)

£ £ i) s .
+ 2 Y g, 2) | TT £ Ae) — o | EICYERVOR NIPVEE=R )

= kti (B Xe) gy

+ 1N Y glug ) (% IT £usom - 11 f(uk,;m) B
j=1 k#j k#j

[ N A,L [ m .
Z uj,z)g%,m(n FOusAg) — 1) Hf(MJU) TT F G i)lI%i & 2,5 @ =

‘
Z:: k#i Fy Xi) s k#j
L om N om m ‘ ~
F30 5 90 2)glugs Ad) (M IT Feso i) — 1 f(;zk,u,-)> [T 7 201% @ 2.6, @ =)
i=1j=1 Fpg, X) k#j k#j k#i
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Proof of formulae

Expectation value of the transfer matrix (acting on off-shell state)

o We ultimately wish to calculate res,_ 5 {S¢,m(2)}, and not all of the scalar
products resulting from the previous summation have poles at this point
o The first type of non-zero residue which we will encounter is

lim {(z —uB)s,, m( B,)\B‘)\c,ﬁjc @z)}

7*”‘

= (r3(2) — rs(uB)) H Py ) H £ B wP)sPetm) (3B AB(NC 5T)

m—1 m—1 m B
.. B B B ,B .. B B c(uB O gmodum) (=B |\ B|,C -C
= (r3<z> I sl wf) - rwB 2B 11 f(uk-,um,)> I1 . uiH)sg o 2im (a5 AP AC, BE)
k=1 k=1 k#j

where the final line follows from the Bethe equations.

o Notice that the factor in blue is common with the expression that we have already
found.
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Proof of formulae

Expectation value of the transfer matrix (acting on off-shell state)

o The second type of residue has an analogous form, but the computation is more
subtle:

lnn {(z*um)szz m( B, \A FP""W EBZ)}

z%um

d —~
= (ra(») = r3uB)) TT 7B u) T £ Bspos “{’”)(ﬁﬁ,AB\A? ®u2.aS)
k] k=1

m—1 B B m—1 B B
= (r:;(z) [T fumonid) =t 2B T1 _f(uk,,,,,m))
k=1

m B
x I1 f(uﬁ,,ug)szll:),?,(q"‘>(ﬁ3 B‘A +u,,,,ujc)
k#j ’
o Crucially, Sg}m([,LB AB|)\C zZ, [ C @ z) does not depend on r1(z):
0y )
( 2
( 2
—
2
— =
2 3
2 3
2 3
{ 111




Proof of formulae

Recursion relation for on/off-shell scalar product

o We equate the result of acting on the left with the result of acting on the right, and
cancel the common factor in blue. We obtain the recursion relation

- . B B C C
Spm B ABING uC) =

B ,Cy v~ 17 B Oy T c Ccy..C B chc c.modB), B B o
= Fm s AT 30 T Fgm i) T £ ) a(uf  wim)Ba(uy INT w)s, 0 (G, A7 X

J=1 k] k)
LM L M L o o m
+ > 9y A7) T fluam o mig) T £ 250 TT Fleg - m3)
i=1j=1 K] ki k]
. B

c B csC ,C c B c.c camodwB) B BleCc . B -Cn

x (9§ nB)p1(AE I ) = 908 1By 83§ INC, wC)) s (G5 AR @

i B By
o This recursion relation can be conveniently written in terms of contour integrals:
B B.C O qnu)(l{/lﬁi? /B

Sem (BB, AF A, 1) de o ody Spo," (k
F(uB, pC) x 2mi Jy 2mi

 uB AB

n

A€ @ /1,1”)7 S x, ,u.C D ;/)
f(pB o ul, ne
c c ,c c ,c
B B o f(u™,y) (B1(z|A™, u™)  Ba(y|A™, u™)
Xg(@, y)g(@, ) g(Y, ) F (2, AT) : - ;

" (B, y) g(z, ub) 9(y, uf)
o The integration contours surround only the following poles:

> Y)

xoxfeul,  You§
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Proof of formulae

Solution of recursion relation

o It is straightforward to iterate this recursion relation a further m — 1 times:

B A\B|A\C, ,C)

Sp,m (1
f(uB, u®)

dey [ dy "~ do o dy od(uB)
?{ 1 ?! vi o }5 m }14 Ym S[\n[' 1(p ’(U‘ )\B‘)\C opBos, O) x
xy 27w Jy, 2me Xy 270 m 2l ' /

T , — By g xSk Uk) (ﬂl(ﬂ:\xmyk) _ ﬁs(yk\xk,Yk)>
kllllg(wk )9 w9k i) f (ors Xi) g = pE— o P)

o The sets X and Y}, are given by

Xy =2 oul cx1, Yi=pSoul oy
o The integration contours surround the poles
X DA o pP owxy_y, Vi DS Syr_1

o The base of the recursion is a modified SU(2) on/off-shell scalar product, for which
all r1 variables are rescaled:

ri(z) — 7() s VzeABoAC g uf
f(uB,2)
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Recovering known results

SU(2) on/off-shell scalar product

@ By choosing one of the two cardinalities £ or m to be zero, one should recover an
SU(2) on/off-shell scalar product.

o The case m = 0 clearly reproduces the Slavnov determinant formula. In that case
there are no integrals at all, and we trivially obtain

SUOAPIN) - Sp@,APA])
det
S1(@,ABINEY ... S0, AB|N\G
S1.0(8,AB|AC,0) = QAT o SOATR)
K(AB)A(AC)

o The case £ = 0 is more subtle. In that case the determinant in the integrand
becomes

glz, uf) o glom, puP)

gz, ul) - g@m,ph)
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Recovering known results

SU(2) on/off-shell scalar product

o The integration over the contours X; is now trivialized. In particular, the contour
X surrounds a single pole at z; = ;Lf, for all 1 < j < m. Evaluating these
integrals explicitly, we are left with

So,m (12,00, u€) =

dym dy1 i
7{ Y ?{ Ny y) [T h(¥k, vk) B3 (ukl0, Yi) 9 (i, )
y k=1

27 L 2

o The sets Y}, are unchanged from before:
Y, =puS & up | Syp1

e This multiple integral evaluates to the Slavnov determinant:

ST B, 0luy) - S (BB, 0uT)
det
SO,m(I—LB7m‘07I“LC) = : — —
A(puB)A(uC)
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Recovering known results

Comments and open questions

o When a single set of Bethe roots tends to infinity, )\f — 00 or ,uﬁ — 00, the scalar
product factorizes into a product of two determinants [MW 12| [Foda, MW 13].
This result can be easily recovered from the multiple integral expressions.

o In the case where the sets AZC and u& are also Bethe roots, we recover the
norm-squared. In that case, the scalar product is known as a single determinant
[Reshetikhin 86] [Belliard, Pakuliak, Ragoucy, Slavnov 12|. How to obtain these
results from the multiple integral expression?

o Can the expression be further simplified? It is tempting to speculate that some of
the integrations could be performed explicitly:

d dyy
f ym 7{ LN (y)9(1C,y) x
v v

270 . 2m

[T 9@@r, )P (Yi, yk)

<51(1’k|xk7 Yi)  Bs(yk| Xk, Yi)
k=1

By _ 2
9k, i) =7
9(@, nf) 9k, 1f) )
o Are these expressions useful for studying more advanced correlation functions of
the SU(3)-invariant XXX spin chain or in the study of three-point functions in the
SU(3) sector of N'=4 SYM [Foda 12] [Foda, Jiang, Kostov, Serban 13]?
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