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Some notation

We use boldface, with a subscript, to denote a set and its cardinality:

xm = {x1, . . . , xm}, yn = {y1, . . . , yn}

Sometimes the subscript can be omitted when the cardinality is clear from context,
e.g. xm ≡ x.

Omission of an element is indicated by a circumflex and an additional subscript:

x̂m,i = {x1, . . . , xi−1, xi+1, . . . , xm}, ŷn,j = {y1, . . . , yj−1, yj+1, . . . , yn}

At times we keep only the subscript of the omitted variable, e.g. x̂m,i ≡ x̂i.

We use ⊕ to denote a union of sets:

xm ⊕ yn = {x1, . . . , xm} ⊕ {y1, . . . , yn} = {x1, . . . , xm, y1, . . . , yn}

We use ⊖ to denote exclusion of a subset:

{x1, . . . , xm, y1, . . . , yn} ⊖ yn = {x1, . . . , xm}

Michael Wheeler SU(3) on/off-shell scalar product as multiple integral
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Useful functions

We define three types of rational function:

f(x, y) =
x− y + 1

x− y
, g(x, y) =

1

x− y
, h(x, y) = x− y + 1

When these functions take a set as an argument, a product over all elements in the
set is implied:

f(x,yn) =
n∏

j=1

f(x, yj), f(xm, y) =
m∏
i=1

f(xi, y), f(xm,yn) =
m∏
i=1

n∏
j=1

f(xi, yj)

Combining all of this notation, we have (for example)

f(w,xℓ ⊕ ym ⊖ zn) =

∏ℓ
i=1 f(w, xi)

∏m
j=1 f(w, yj)∏n

k=1 f(w, zk)

which is well defined, even if zn is not a subset of xℓ ⊕ ym.
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SU(3)-invariant models
The SU(3)-invariant R-matrix is given by

R
(1)
αβ

(λ, µ) =



f(λ, µ) 0 0 0 0 0 0 0 0
0 1 0 g(λ, µ) 0 0 0 0 0
0 0 1 0 0 0 g(λ, µ) 0 0

0 g(λ, µ) 0 1 0 0 0 0 0
0 0 0 0 f(λ, µ) 0 0 0 0
0 0 0 0 0 1 0 g(λ, µ) 0

0 0 g(λ, µ) 0 0 0 1 0 0
0 0 0 0 0 g(λ, µ) 0 1 0
0 0 0 0 0 0 0 0 f(λ, µ)


αβ

The SU(2)-invariant R-matrix is given by

R
(2)
αβ

(λ, µ) =


f(λ, µ) 0 0 0

0 1 g(λ, µ) 0

0 g(λ, µ) 1 0
0 0 0 f(λ, µ)


αβ

The entries of either R-matrix have the graphical representation

[
R

(n)
αβ (λ, µ)

]iαjα

iβjβ
= λ iα jα

µ
iβ

jβ
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SU(3)-invariant models

Consider a family of operators, grouped in the monodromy matrix

T
(1)
α (λ) =

 T11(λ) T12(λ) T13(λ)
T21(λ) T22(λ) T23(λ)
T31(λ) T32(λ) T33(λ)


α

whose commutation relations are prescribed by the bilinear relation

R
(1)
αβ(λ, µ)T

(1)
α (λ)T

(1)
β (µ) = T

(1)
β (µ)T

(1)
α (λ)R

(1)
αβ(λ, µ)

Construct Hilbert spaces H and H∗ by assuming the following action of the
operators on pseudo-vacuum states |0⟩ and ⟨0|:

Tii(λ)|0⟩ = ai(λ)|0⟩, Tkj(λ)|0⟩ = 0, Tjk(λ)|0⟩ ̸= 0

⟨0|Tii(λ) = ai(λ)⟨0|, ⟨0|Tkj(λ) ̸= 0, ⟨0|Tjk(λ) = 0

 ∀ 1⩽i⩽3

1⩽j<k⩽3

The Bethe Ansatz allows us to find the eigenvectors and eigenvalues of the transfer
matrix:

T (λ) =
3∑

k=1

Tkk(λ)
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Nested Bethe Ansatz [Kulish, Reshetikhin 83] [Belliard, Ragoucy 08]

Take the monodromy matrix

T
(1)
α (λ) =

 T11(λ) T12(λ) T13(λ)
T21(λ) T22(λ) T23(λ)
T31(λ) T32(λ) T33(λ)


α

and break it into sub-matrices:

B
(1)
β

(λ) =

[
T21(λ)
T31(λ)

]
β

C
(1)
γ (λ) =

[
T12(λ) T13(λ)

]
γ D

(1)
δ

(λ) =

[
T22(λ) T23(λ)
T32(λ) T33(λ)

]
δ

Repeat this for the SU(2)-type monodromy matrices below:

T
(2)
δ (µ|λℓ, . . . , λ1) = D

(1)
δ (µ)R

(2)
δαℓ

(µ, λℓ) . . . R
(2)
δα1

(µ, λ1)

=

(
A(2)(µ|λℓ, . . . , λ1) C(2)(µ|λℓ, . . . , λ1)

B(2)(µ|λℓ, . . . , λ1) D(2)(µ|λℓ, . . . , λ1)

)
δ

T
(2)
δ (λℓ, . . . , λ1|µ) = R

(2)
δαℓ

(µ, λℓ) . . . R
(2)
δα1

(µ, λ1)D
(1)
δ (µ)

=

(
A(2)(λℓ, . . . , λ1|µ) C(2)(λℓ, . . . , λ1|µ)
B(2)(λℓ, . . . , λ1|µ) D(2)(λℓ, . . . , λ1|µ)

)
δ
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Off-shell Bethe vectors

Following the nested Bethe Ansatz, one proposes that the states in H

|Ψ⟩ = |λℓ,µm⟩ = C
(1)
α1 (λ1) . . . C

(1)
αℓ

(λℓ)C
(2)(µ1) . . . C

(2)(µm)|0⟩ ⊗ | ⇑α⟩

are eigenvectors of the transfer matrix. We refer to these as off-shell Bethe vectors.

The vector | ⇑α⟩ = ⊗ℓ
i=1| ↑⟩αi is needed to fully contract out the vector spaces V ∗αi

.

The Bethe vectors admit a convenient graphical representation:

|0⟩
C(2)(µm) µm

2 3

2 3

C(2)(µ1) µ1
2 3

C
(1)
αℓ

(λℓ) λℓ
1

1

1

C
(1)
α1

(λ1) λ1
1

2 2 2 2
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Off-shell dual Bethe vectors

Similarly, one proposes that the states in H∗

⟨Ψ| = ⟨µm,λℓ| = ⟨⇑α | ⊗ ⟨0|B(2)(µ1) . . . B
(2)(µm)B

(1)
α1 (λ1) . . . B

(1)
αℓ

(λℓ)

are eigenvectors of the transfer matrix. These are off-shell dual Bethe vectors.

The vector ⟨⇑α | = ⊗ℓ
i=1⟨↑ |αi is present to contract out the vector spaces Vαi .

The dual Bethe vectors have a similar graphical representation:

⟨0|

B
(1)
αℓ

(λℓ)
1

λℓ

1

1

B
(1)
α1

(λ1)
1

λ1

B(2)(µm)
3 2

µm

3 2

B(2)(µ1)
3 2

µ1

2 2 2 2
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Bethe equations and on-shell states

In order to obtain genuine eigenstates of the transfer matrix, one imposes the
Bethe equations on the sets λℓ and µm:

r1(λi) =
a1(λi)

a2(λi)
= −

ℓ∏
k=1

(
λk − λi − 1

λk − λi + 1

) m∏
k=1

(
µk − λi + 1

µk − λi

)
, 1 ⩽ i ⩽ ℓ

r3(µj) =
a3(µj)

a2(µj)
= −

m∏
k=1

(
µj − µk − 1

µj − µk + 1

) ℓ∏
k=1

(
µj − λk + 1

µj − λk

)
, 1 ⩽ j ⩽ m

For the purpose of future calculations, it is useful to introduce the functions

β1

(
ν
∣∣∣λℓ,µm

)
= 1 + r1(ν)

m∏
j=1

(
µj − ν

µj − ν + 1

) ℓ∏
i=1

(
λi − ν + 1

λi − ν − 1

)

β3

(
ν
∣∣∣λℓ,µm

)
= 1 + r3(ν)

ℓ∏
i=1

(
ν − λi

ν − λi + 1

) m∏
j=1

(
ν − µj + 1

ν − µj − 1

)

In terms of these, the Bethe equations are simply

β1

(
λi

∣∣∣λℓ,µm

)
= 0, ∀ 1 ⩽ i ⩽ ℓ, and β3

(
µj

∣∣∣λℓ,µm

)
= 0, ∀ 1 ⩽ j ⩽ m.
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Bethe equations and on-shell states

Also for later convenience, let us re-normalize the Bethe vectors and the transfer
matrix:

∥λℓ,µm⟩⟩ =
|λℓ,µm⟩

f(µm,λℓ)a2(λℓ)a2(µm)
, ⟨⟨µm,λℓ∥ =

⟨µm,λℓ|
f(µm,λℓ)a2(λℓ)a2(µm)

T(z) =
3∑

k=1

Tkk(z)

a2(z)

Assuming that the Bethe equations hold, the Bethe vectors that we have defined
become eigenstates of the transfer matrix:

T(z)∥λℓ,µm⟩⟩ = Λ
(
z
∣∣∣λℓ,µm

)
∥λℓ,µm⟩⟩, ⟨⟨µm,λℓ∥T(z) = Λ

(
z
∣∣∣λℓ,µm

)
⟨⟨µm,λℓ∥

The eigenvalue, which is the same for both on-shell Bethe vectors and their duals,
is given by

Λ
(
z
∣∣∣λℓ,µm

)
= r1(z)

ℓ∏
i=1

f(λi, z) +

ℓ∏
i=1

f(z, λi)

m∏
j=1

f(µj , z) + r3(z)

m∏
j=1

f(z, µj)
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SU(3) scalar product
The scalar product of the model is simply defined as

Sℓ,m(µB
m,λB

ℓ |λ
C
ℓ ,µC

m) = ⟨⟨µB
m,λB

ℓ ∥λ
C
ℓ ,µC

m⟩⟩
|0⟩

µC
m

2 3

2 3

µC
1

2 3

λC
ℓ

1

1

1

λC
1

1

2 2 2 2

⟨0|

1 λB
ℓ

1

1

1 λB
1

3 2 µB
m

3 2

3 2 µB
1

2 2 2 2

In what follows, we are interested in the case where λB
ℓ ,µB

m are Bethe roots, and

λC
ℓ ,µC

m are free. We refer to this as the on/off-shell scalar product.
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SU(3) scalar product (SU(2) as a special case)

The cases ℓ = 0 and m = 0 correspond to an SU(2) scalar product, where the
answer was found in determinant form in [Slavnov 89]:

Sℓ,0(∅,λ
B
ℓ |λ

C
ℓ ,∅) =

det
{
Sj(∅,λB |λC

i )
}

←−
∆(λB)

−→
∆(λC)

, S0,m(µ
B
m,∅|∅,µC

m) =
det

{
S′
j(µ

B , ∅|µC
i )
}

←−
∆(µB)

−→
∆(µC)

The functions within these determinants are defined to be

Sj(∅,λB |λC
i ) =

1

λB
j − λC

i

r1(λ
C
i )

ℓ∏
k ̸=j

(λB
k − λC

i + 1)−
ℓ∏

k ̸=j

(λB
k − λC

i − 1)


S′j(µ

B ,∅|µC
i ) =

1

µB
j − µC

i

 m∏
k ̸=j

(µB
k − µC

i + 1)− r3(µ
C
i )

m∏
k ̸=j

(µB
k − µC

i − 1)
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We introduce generalizations of these functions:

Sj(µ
B ,λB |λC

i ) =

1

λB
j − λC

i

r1(λ
C
i )

m∏
k=1

(
µB
k − λC

i

µB
k − λC

i + 1

)
ℓ∏

k ̸=j

(λB
k − λC

i + 1)−
ℓ∏

k ̸=j

(λB
k − λC

i − 1)



S′j(µ
B ,λB |µC

i ) =

1

µB
j − µC

i

 m∏
k ̸=j

(µB
k − µC

i + 1)− r3(µ
C
i )

ℓ∏
k=1

(
µC
i − λB

k

µC
i − λB

k + 1

)
m∏

k ̸=j

(µB
k − µC

i − 1)
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Multiple integral expressions [MW 13]

Define the extended Slavnov-type determinant

S
(
µB ,λB

∣∣∣λC
∣∣∣x) =

det



S1(µB ,λB |λC
1 ) · · · Sℓ(µ

B ,λB |λC
1 ) g(x1, λC

1 ) · · · g(xm, λC
1 )

..

.
..
.

..

.
..
.

S1(µB ,λB |λC
ℓ ) · · · Sℓ(µ

B ,λB |λC
ℓ ) g(x1, λC

ℓ ) · · · g(xm, λC
ℓ )

S1(µB ,λB |µB
1 ) · · · Sℓ(µ

B ,λB |µB
1 ) g(x1, µB

1 ) · · · g(xm, µB
1 )

.

..
.
..

.

..
.
..

S1(µB ,λB |µB
m) · · · Sℓ(µ

B ,λB |µB
m) g(x1, µB

m) · · · g(xm, µB
m)


−→
∆(λB)

←−
∆(λC ⊕ µB)
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Multiple integral expressions [MW 13]

The scalar product of an on-shell dual state ⟨⟨µB ,λB∥ and an off-shell state
∥λC ,µC⟩⟩ is given by the multiple integral formula

Sℓ,m(µB ,λB |λC ,µC) =

∮
Xm

dxm

2πi

∮
Ym

dym

2πi
· · ·
∮
X1

dx1

2πi

∮
Y1

dy1

2πi
S
(
µB ,λB

∣∣∣λC
∣∣∣x)g(µC ,y)

−→
∆(y)×

m∏
k=1

g(xk, yk)h(xk,Xk)h(Yk, yk)

(
β1(xk|Xk,Yk)

g(xk, µ
B
k )

−
β3(yk|Xk,Yk)

g(yk, µ
B
k )

)
g(yk,µ

B
k )

g(xk, µ̄
B
k )

Xk and Yk denote the sets

Xk = λC
ℓ ⊕ µB

k−1 ⊖ xk−1, Yk = µC
m ⊕ µB

k−1 ⊖ yk−1

The integration contours surround the points

Xk ⊃ λC
ℓ ⊕ µB

m, Yk ⊃ µC
m
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Multiple integral expressions [MW 13]

Define another extended Slavnov determinant:

S′
(
µB ,λB

∣∣∣µC
∣∣∣y) =

det



g(y1, λB
1 ) · · · g(yℓ, λ

B
1 ) S′1(µ

B ,λB |λB
1 ) · · · S′m(µB ,λB |λB

1 )
..
.

..

.
..
.

..

.
g(y1, λB

ℓ ) · · · g(yℓ, λ
B
ℓ ) S′1(µ

B ,λB |λB
ℓ ) · · · S′m(µB ,λB |λB

ℓ )

g(y1, µC
1 ) · · · g(yℓ, µ

C
1 ) S′1(µ

B ,λB |µC
1 ) · · · S′m(µB ,λB |µC

1 )
.
..

.

..
.
..

.

..
g(y1, µC

m) · · · g(yℓ, µ
C
m) S′1(µ

B ,λB |µC
m) · · · S′m(µB ,λB |µC

m)


←−
∆(µB)

−→
∆(µC ⊕ λB)
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Multiple integral expressions [MW 13]

The scalar product of an on-shell dual state ⟨⟨µB ,λB∥ and an off-shell state
∥λC ,µC⟩⟩ is also given by

Sℓ,m(µB ,λB |λC ,µC) =

∮
Xℓ

dxℓ

2πi

∮
Yℓ

dyℓ

2πi
· · ·
∮
X1

dx1

2πi

∮
Y1

dy1

2πi
S′
(
µB ,λB

∣∣∣µC
∣∣∣y)g(x,λC)

←−
∆(x)×

ℓ∏
k=1

g(xk, yk)h(xk,Xk)h(Yk, yk)

(
β1(xk|Xk,Yk)

g(xk, λ
B
k )

−
β3(yk|Xk,Yk)

g(yk, λ
B
k )

)
g(λB

k , xk)

g(λ̄B
k , yk)

Xk and Yk denote the sets

Xk = λC
ℓ ⊕ λB

k−1 ⊖ xk−1, Yk = µC
m ⊕ λB

k−1 ⊖ yk−1

The integration contours surround the points

Xk ⊃ λC
ℓ , Yk ⊃ µC

m ⊕ λB
ℓ
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Sum formula for SU(3) off/off-shell scalar product [Reshetikhin 86]

Reshetikhin discovered a sum formula for the SU(3) scalar product, in the
off/off-shell case:

f(µ
B

,λ
B

)f(µ
C

,λ
C

)Sℓ,m(µ
B

,λ
B |λC

,µ
C

) =
∑

Z(λ
B
II ,µ

C
I |λ

C
II ,µ

B
I )Z(λ

C
I ,µ

B
II |λ

B
I ,µ

C
II )×

f(λ
C
I ,λ

C
II )f(λ

B
II ,λ

B
I )f(µ

C
II ,µ

C
I )f(µ

B
I ,µ

B
II )f(µ

B
II ,λ

B
II )f(µ

C
I ,λ

C
I )r1(λ

B
I )r1(λ

C
II )r3(µ

B
I )r3(µ

C
II )

The sum is taken over all partitions of the variables into disjoint subsets:

λC = λC
I ⊕ λC

II , λB = λB
I ⊕ λB

II , such that |λB
I | = |λC

I |, |λB
II | = |λC

II |

µC = µC
I ⊕ µC

II , µB = µB
I ⊕ µB

II , such that |µB
I | = |µC

I |, |µB
II | = |µC

II |

This formula generalizes one found in [Korepin 82] [Izergin, Korepin 84] for
SU(2)-invariant models. By taking either of the cardinalities ℓ or m to be zero, we
recover that earlier result.

We can go to the on/off-shell scalar product easily:

r1(λ
B
I )→ (−)

|λB
I | f(λ

B
I ,λB)

f(λB ,λB
I )

f(µ
B

,λ
B
I ), r3(µ

B
I )→ (−)

|µB
I | f(µ

B ,µB
I )

f(µB
I ,µB)

f(µ
B
I ,λ

B
)
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Sum formula for SU(3) off/off-shell scalar product [Reshetikhin 86]

Unfortunately, the function Z is itself a non-trivial object. In [Reshetikhin 86] it
was defined as the partition function below:

Z(λℓ,µm|wℓ,vm) =

λ1 1 2

1 2

1 2

1 2

λℓ 1 2

µ1 3 2

3 2

3 2

µm3 2

w1

2

1

2

1

2

1

2

1

wℓ

2

1

v1

3

2

3

2

3

2

vm

3

2

More recently [MW 12] [Belliard, Pakuliak, Ragoucy, Slavnov 12], it was calculated
as a sum over trilinear products of domain wall partition functions.
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Properties of the SU(3) off/off-shell scalar product [Reshetikhin 86]

Despite its complicated form, the off/off-shell scalar product has simple recursive
behaviour at some of its poles:

lim
µC
m→µ

µB
m→µ

{
(µC

m − µB
m)Sℓ,m(µB

m,λB
ℓ |λ

C
ℓ ,µC

m)
}

=

(
r3(µ

C
m)− r3(µ

B
m)
)m−1∏

j=1

f(µ, µC
j )f(µ, µB

j )Smod(µ)
ℓ,m−1

(
µB

m−1,λ
B
ℓ

∣∣∣λC
ℓ ,µC

m−1

)
The smaller scalar product is modified by scaling its variables r1, r3:

r3(y) 7→ r3(y)
f(y, µ)

f(µ, y)
, r1(x) 7→

r1(x)

f(µ, x)
, ∀


y ∈ µB

m−1 ⊕ µC
m−1

x ∈ λB
ℓ ⊕ λC

ℓ

Due to symmetry, a similar relation holds for equating any pair µC
i = µB

j .

The scalar product is analytic at the points µC
i = λB

j :

lim
µC
m→λB

ℓ

{
(µC

m − λB
ℓ )Sℓ,m(µB

m,λB
ℓ |λ

C
ℓ ,µC

m)
}

= 0
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Expectation value of the transfer matrix (acting on on-shell state)

To derive a recursion relation for the on/off-shell scalar product (without
specializing any of its variables), we consider the quantity

Sℓ,m(z) = ⟨⟨µB
m,λB

ℓ ∥T(z)∥λ
C
ℓ ,µC

m⟩⟩

Since ⟨⟨µB
m,λB

ℓ ∥ is on-shell, we can easily compute the action of the transfer matrix
when it acts left:

Sℓ,m(z) = Λ(z|λB ,µB)⟨⟨µB
m,λB

ℓ ∥λ
C
ℓ ,µC

m⟩⟩

Calculating the residue of Sℓ,m(z) at z = µB
m, we obtain

resz=µB
m

{
Sℓ,m(z)

}
= lim

z→µB
m

{
(z − µB

m)Sℓ,m(z)
}

=r3(z)

m−1∏
j=1

f(µB
m, µB

j )−
m−1∏
j=1

f(µB
j , µB

m)

ℓ∏
i=1

f(µB
m, λB

i )

Sℓ,m(µB ,λB |λC ,µC)
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Expectation value of the transfer matrix (acting on off-shell state)

Now let us calculate the same quantity

Sℓ,m(z) = ⟨⟨µB
m,λ

B
ℓ ∥T(z)∥λ

C
ℓ ,µ

C
m⟩⟩

but by acting on the off-shell state, instead.

To perform this calculation, we use formulae found in [Belliard, Pakuliak, Ragoucy,
Slavnov 13]:

T(z)∥λ,µ⟩⟩ = Λ(z|λ,µ)∥λ,µ⟩⟩

+ f(µ, z)
ℓ∑

i=1

g(λi, z)

 ℓ∏
k ̸=i

f(λi, λk)−
r1(λi)

f(µ, λi)

ℓ∏
k ̸=i

f(λk, λi)

 ∥λ̂i ⊕ z,µ⟩⟩

+ f(z,λ)
m∑

j=1

g(µj , z)

 r3(µj)

f(µj ,λ)

m∏
k ̸=j

f(µj , µk)−
m∏

k ̸=j

f(µk, µj)

 ∥λ, µ̂j ⊕ z⟩⟩

+
ℓ∑

i=1

m∑
j=1

g(µj , z)g(µj , λi)

 ℓ∏
k ̸=i

f(λi, λk)−
r1(λi)

f(µ, λi)

ℓ∏
k ̸=i

f(λk, λi)

 m∏
k ̸=j

f(µk, µj)∥λ̂i ⊕ z, µ̂j ⊕ z⟩⟩

+
ℓ∑

i=1

m∑
j=1

g(λi, z)g(µj , λi)

 r3(µj)

f(µj ,λ)

m∏
k ̸=j

f(µj , µk)−
m∏

k ̸=j

f(µk, µj)

 ℓ∏
k ̸=i

f(λi, λk)∥λ̂i ⊕ z, µ̂j ⊕ z⟩⟩
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Expectation value of the transfer matrix (acting on off-shell state)

We ultimately wish to calculate resz=µB
m
{Sℓ,m(z)}, and not all of the scalar

products resulting from the previous summation have poles at this point.

The first type of non-zero residue which we will encounter is

lim
z→µB

m

{
(z − µ

B
m)Sℓ,m

(
µ
B

,λ
B |λC

, µ̂
C
j ⊕ z

)}

=
(
r3(z) − r3(µ

B
m)

) m∏
k ̸=j

f(µ
B
m, µ

C
k )

m−1∏
k=1

f(µ
B
m, µ

B
k )S

mod(µB
m)

ℓ,m−1

(
µ̂
B
m,λ

B
∣∣∣λC

, µ̂
C
j

)

=

r3(z)

m−1∏
k=1

f(µ
B
m, µ

B
k ) − f(µ

B
m,λ

B
)

m−1∏
k=1

f(µ
B
k , µ

B
m)

 m∏
k ̸=j

f(µ
B
m, µ

C
k )S

mod(µB
m)

ℓ,m−1

(
µ̂
B
m,λ

B
∣∣∣λC

, µ̂
C
j

)

where the final line follows from the Bethe equations.

Notice that the factor in blue is common with the expression that we have already
found.
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Expectation value of the transfer matrix (acting on off-shell state)
The second type of residue has an analogous form, but the computation is more
subtle:

lim
z→µB

m

{
(z − µ

B
m)Sℓ,m

(
µ
B

,λ
B |λ̂C

i ⊕ z, µ̂
C
j ⊕ z

)}

=
(
r3(z) − r3(µ

B
m)

) m∏
k ̸=j

f(µ
B
m, µ

C
k )

m−1∏
k=1

f(µ
B
m, µ

B
k )S

mod(µB
m)

ℓ,m−1

(
µ̂
B
m,λ

B
∣∣∣λ̂C

i ⊕ µ
B
m, µ̂

C
j

)

=

r3(z)

m−1∏
k=1

f(µ
B
m, µ

B
k ) − f(µ

B
m,λ

B
)

m−1∏
k=1

f(µ
B
k , µ

B
m)


×

m∏
k ̸=j

f(µ
B
m, µ

C
k )S

mod(µB
m)

ℓ,m−1

(
µ̂
B
m,λ

B
∣∣∣λ̂C

i ⊕ µ
B
m, µ̂

C
j

)

Crucially, Sℓ,m(µB ,λB |λ̂C
i ⊕ z, µ̂C

j ⊕ z) does not depend on r1(z):

|0⟩
2 z

2

2

2

2 3

2 3

2 3 z

1 1 1 1
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Recursion relation for on/off-shell scalar product

We equate the result of acting on the left with the result of acting on the right, and
cancel the common factor in blue. We obtain the recursion relation

Sℓ,m(µ
B

,λ
B |λC

,µ
C

) =

− f(µ
B
m,λ

C
)

m∑
j=1

m∏
k ̸=j

f(µ
B
m, µ

C
k )

m∏
k ̸=j

f(µ
C
k , µ

C
j )g(µ

C
j , µ

B
m)β3(µ

C
j |λC

,µ
C

)S
mod(µB

m)

ℓ,m−1

(
µ̂
B
m,λ

B
∣∣∣λC

, µ̂
C
j

)

+

ℓ∑
i=1

m∑
j=1

g(µ
C
j , λ

C
i )

m∏
k ̸=j

f(µ
B
m, µ

C
k )

ℓ∏
k ̸=i

f(λ
C
i , λ

C
k )

m∏
k ̸=j

f(µ
C
k , µ

C
j )

×
(
g(µ

C
j , µ

B
m)β1(λ

C
i |λC

,µ
C

) − g(λ
C
i , µ

B
m)β3(µ

C
j |λC

,µ
C

)
)
S
mod(µB

m)

ℓ,m−1

(
µ̂
B
m,λ

B
∣∣∣λ̂C

i ⊕ µ
B
m, µ̂

C
j

)

This recursion relation can be conveniently written in terms of contour integrals:

Sℓ,m(µB ,λB |λC ,µC)

f(µB ,µC)
=

∮
X

dx

2πi

∮
Y

dy

2πi

Smod(µB
m)

ℓ,m−1

(
µB ⊖ µB

m,λB
∣∣∣λC ⊕ µB

m ⊖ x,µC ⊖ y
)

f(µB ⊖ µB
m,µC ⊖ y)

×g(x, y)g(x, µ
B
m)g(y, µ

B
m)f(x,λ

C
)
f(µC , y)

f(µB , y)

(
β1(x|λC ,µC)

g(x, µB
m)

−
β3(y|λC ,µC)

g(y, µB
m)

)

The integration contours surround only the following poles:

X ⊃ λC
ℓ ⊕ µB

m, Y ⊃ µC
m
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Solution of recursion relation

It is straightforward to iterate this recursion relation a further m− 1 times:

Sℓ,m(µB ,λB |λC ,µC)

f(µB ,µC)
=

∮
X1

dx1

2πi

∮
Y1

dy1

2πi
· · ·
∮
Xm

dxm

2πi

∮
Ym

dym

2πi
Smod(µB)
ℓ,0

(
∅,λB

∣∣∣λC ⊕ µ
B ⊖ x, ∅

)
×

m∏
k=1

g(xk, yk)g(xk, µ
B
k )g(yk, µ

B
k )f(xk,Xk)

f(Yk, yk)

f(µB , yk)

(
β1(xk|Xk,Yk)

g(xk, µ
B
k
)
−

β3(yk|Xk,Yk)

g(yk, µ
B
k
)

)

The sets Xk and Yk are given by

Xk = λC
ℓ ⊕ µB

k−1 ⊖ xk−1, Yk = µC
m ⊕ µB

k−1 ⊖ yk−1

The integration contours surround the poles

Xk ⊃ λC
ℓ ⊕ µB

k ⊖ xk−1, Yk ⊃ µC
m ⊖ yk−1

The base of the recursion is a modified SU(2) on/off-shell scalar product, for which
all r1 variables are rescaled:

r1(z) 7→
r1(z)

f(µB , z)
, ∀ z ∈ λB ⊕ λC ⊕ µB
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SU(2) on/off-shell scalar product

By choosing one of the two cardinalities ℓ or m to be zero, one should recover an
SU(2) on/off-shell scalar product.

The case m = 0 clearly reproduces the Slavnov determinant formula. In that case
there are no integrals at all, and we trivially obtain

Sℓ,0(∅,λB |λC ,∅) =

det


S1(∅,λB |λC

1 ) · · · Sℓ(∅,λB |λC
1 )

.

..
.
..

S1(∅,λB |λC
ℓ ) · · · Sℓ(∅,λB |λC

ℓ )


−→
∆(λB)

←−
∆(λC)

The case ℓ = 0 is more subtle. In that case the determinant in the integrand
becomes

S
(
µB ,∅

∣∣∣∅∣∣∣x) =
1

←−
∆(µB)

det

 g(x1, µB
1 ) · · · g(xm, µB

1 )
..
.

..

.
g(x1, µB

m) · · · g(xm, µB
m)
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SU(2) on/off-shell scalar product

The integration over the contours Xj is now trivialized. In particular, the contour
Xj surrounds a single pole at xj = µB

j , for all 1 ⩽ j ⩽ m. Evaluating these
integrals explicitly, we are left with

S0,m(µB ,∅|∅,µC) =∮
Ym

dym

2πi
· · ·
∮
Y1

dy1

2πi

←−
∆(y)g(µC ,y)

m∏
k=1

h(Yk, yk)β3(yk|∅,Yk)g(yk,µ
B
k )

The sets Yk are unchanged from before:

Yk = µC
m ⊕ µB

k−1 ⊖ yk−1

This multiple integral evaluates to the Slavnov determinant:

S0,m(µB ,∅|∅,µC) =

det


S′1(µ

B ,∅|µC
1 ) · · · S′m(µB ,∅|µC

1 )
.
..

.

..
S′1(µ

B ,∅|µC
m) · · · S′m(µB ,∅|µC

m)


−→
∆(µB)

←−
∆(µC)
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Comments and open questions

When a single set of Bethe roots tends to infinity, λB
ℓ →∞ or µB

m →∞, the scalar
product factorizes into a product of two determinants [MW 12] [Foda, MW 13].
This result can be easily recovered from the multiple integral expressions.

In the case where the sets λC
ℓ and µC

m are also Bethe roots, we recover the
norm-squared. In that case, the scalar product is known as a single determinant
[Reshetikhin 86] [Belliard, Pakuliak, Ragoucy, Slavnov 12]. How to obtain these
results from the multiple integral expression?

Can the expression be further simplified? It is tempting to speculate that some of
the integrations could be performed explicitly:∮

Ym

dym

2πi
· · ·
∮
Y1

dy1

2πi

←−
∆(y)g(µC ,y)×

m∏
k=1

g(xk, yk)h(Yk, yk)

(
β1(xk|Xk,Yk)

g(xk, µ
B
k )

−
β3(yk|Xk,Yk)

g(yk, µ
B
k )

)
g(yk,µ

B
k ) = ?

Are these expressions useful for studying more advanced correlation functions of
the SU(3)-invariant XXX spin chain or in the study of three-point functions in the
SU(3) sector of N = 4 SYM [Foda 12] [Foda, Jiang, Kostov, Serban 13]?
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