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Standard problem in quantum models is the calculation
of matrix elements of operators (form factors)

Oy = ($|O9)

where |¢) and |¢’) are eigenstates of the Hamiltonian.



Standard problem in quantum models is the calculation
of matrix elements of operators (form factors)

Oy = ($|O9)

where |¢) and |¢’) are eigenstates of the Hamiltonian.

Suppose that the action of O to the right
or to the left is known

—

Oy =1¢") @O =g

Then we reduce the problem to the calculation of the scalar product,
where one of the states is the eigenstate of the Hamiltonian.

Oy = (Pld") Oy = (B|¢)



In the Algebraic Bethe Ansatz solvable models we usually deal
with scalar products of two states (Bethe vectors), which depend
on sets of complex numbers

W@y ()

The set uw = {uq,...,un} satisfies Bethe equations. The parameters
of the set &' = {u},...,u),} are considered as arbitrary complex numbers.
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In the Algebraic Bethe Ansatz solvable models we usually deal
with scalar products of two states (Bethe vectors), which depend
on sets of complex numbers

(W(@)|y(u')) ~ det N/ (1)
The set uw = {uq,...,un} satisfies Bethe equations. The parameters
of the set &' = {u},...,u),} are considered as arbitrary complex numbers.

In the case of models with GL(2)-invariant R-matrix we have a
compact representation for such scalar products, which was found to
be convenient both for analytical and numerical calculations.
However, in the case of models with GL(3)-invariant R-matrix

we are not so lucky.

Conjecture
In the models with GL(3)-invariant R-matrix an analogue of
the representation (1) does not exist.



W@y ()

The set u consists of the roots of Bethe equations.
The set @ consists of arbitrary complex numbers.



W@y ()

The set u consists of the roots of Bethe equations.
The set @ consists of arbitrary complex numbers.

In practice the parameters @' always
satisfy some restrictions.



In the framework of the Algebraic Bethe Ansatz the most

fundamental form factors are the ones of the monodromy
matrix entries
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In the framework of the Algebraic Bethe Ansatz the most
fundamental form factors are the ones of the monodromy
matrix entries

((@)| Ty ()| ("))

Here both sets w and #' satisfy Bethe equations.

Applying the general method we can act with T;;(z) onto
one of the states

T ()" (@) = [¢({z,4'})) = D a@”) [v(a"), u’ C {zu

,a///

The total set {z,4'} does not satisfy Bethe equations.
However we can not say that the new state |¢({z,u'}))
IS parameterized by arbitrary complex numbers, since
the parameters u’ are some roots of Bethe equations.



Calculating form factors of the monodromy matrix entries
we deal with scalar products

W@y (a"))

where certain restrictions are imposed on both sets w and u”.



Calculating form factors of the monodromy matrix entries
we deal with scalar products

W@y (a"))

where certain restrictions are imposed on both sets w and u”.

Result 2012:  (4(@)[T22(2) [ (@) ~ det N (?2)

(S. Belliard, S. Pakuliak, E. Ragoucy, N.S., '12)



Calculating form factors of the monodromy matrix entries
we deal with scalar products

W@y (a"))

where certain restrictions are imposed on both sets w and u”.
Result 2012:  (4(@)[T22(2) [ (@) ~ det N (?2)

(S. Belliard, S. Pakuliak, E. Ragoucy, N.S., '12)

Result 2013: (@) |T, o (2) |3 (@) ~ det (&)

except the form factor of Ty3(z) (or T31(z)).



Algebraic Bethe Ansatz for GL(3)-invariant models
Rio(u,v)T1(uw)T2(v) = To(v)T1(u) R12(u, v)

T51(z) To2(z) T23(2)

T11(z) Ti2(z) Ti13(2)
T(z) =
131(2) T32(z) T33(2)



Algebraic Bethe Ansatz for GL(3)-invariant models

Rio(u,v)T1(u)T2(v) = To(v)T1(u)Ri2(u, v)

T51(z) To2(z) T23(2)
T31(z) T32(z) T33(z)

GL(3)-invariant R-matrix

T11(z) Ti2(z) Ti13(2)
T(z) =

C

R(u,v) =14 g(u,v)P, g(u,v) =

u—v

(s152) Rio (s182) 1 = Ryo, Vs € GL(3)



GL(3)-invariant R-matrix

C

R(u—v) =14 g(u,v)P, g(u,v) =

u—7v

Other rational functions often appearing in the formulas

fu,v) =14 g(u,v)

f(u,v)
g9(u,v)

h(u,v) =



GL(3)-invariant R-matrix

C

R(u—v) =14 g(u,v)P, g(u,v) =

u—7v

Other rational functions often appearing in the formulas

u—v—+c

U —7v

flu,v) =14 g(u,v) =

flu,v) uwu—v+c
g(u,v) ¢

h(u,v) =



Shorthand notations for products

TE’E/(’J)): H Te,e’(wk)

wk@I)

h(ﬂavj) — H h(Uk,’U])
ULEU

f@o)y= 11 11 [f(uj,vg)
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Shorthand notations for products

TE’E/(’J)): H Te,e’(wk)

wkEE

h(ﬂavj) — H h(Uk,’U])
ULEU

f@o)y= 11 11 [f(uj,vg)

UjEE VLEV

Special subsets

UL EU
URFUj



Bethe vectors

Rio(u,v)T1(u)T2(v) = To(v)T1(u)Ri2(u, v)

Algebraic Bethe Ansatz works if there exists a pseudovacuum
vector |0) and dual pseudovacuum vector (O]

T;;(w)[0) = r;(u)|0), Tjp(w)[0) =0, j>k
(0|7} (u) = rj(u)(O], O|Tjp(u) =0, j<k

One can set one of r;(u) equals to 1 without loss of
generality. Other rj(u) remain free functional parameters

(generalized model). We set r>(u) = 1.



Bethe vectors

We |look for the eigenvectors of the transfer matrix

T(w) = trT'(w) = Ty1(w) + Toz(w) + T33(w)



Bethe vectors

We |look for the eigenvectors of the transfer matrix
T(w) =trT'(w) =T11(w) + Too(w) + T33(w)

The first step is to construct special polynomials in creation
operators (Ty2, T13, 1»3) applied to the pseudovacuum |0).
e Nested Bethe ansatz

(P. Kulish, N. Reshetikhin, '83)

e Other formulations of nested Bethe ansatz

V. Tarasov, A. Varchenko '95

S. Belliard, S. Khoroshkin, S. Pakuliak, E. Ragoucy '08, '10



Bethe vectors

We |look for the eigenvectors of the transfer matrix

T(w) = trT'(w) = Ty1(w) + Toz(w) + T33(w)

a5 0)) = P(Ty5(up), Tis(vp))[0), i<



Bethe vectors

We |look for the eigenvectors of the transfer matrix

T(w) = trT'(w) = Ty1(w) + Toz(w) + T33(w)

Vg p(;0)) = P(Tij(uk)aTz'j(Uk))|O>a i< j v =v1,...,0
a

Example: a=b=1

91,1 (u; v)) = T12(u)T23(v)|0) + g(v, u)T13(u)|0)

We say that |¢a7b(fa;r5)> is a Bethe vector, if the
parameters u and v are generic complex numbers.



Bethe vectors

We |look for the eigenvectors of the transfer matrix

T(w) = trT'(w) = Ty1(w) + Toz(w) + T33(w)

Vg p(1; ) = P<Tz'j(uk)a Tz‘j(vk))|0>> i< j

We say that |y, ,(u;v)) is an on-shell Bethe vector, if the
parameters v and v satisfy the system of Bethe equations

_ flug, ug) — e ( _ S (Wg, vg) _
1(ug) = f(ﬂk,uk)f( ,UL),s 3(vg) f(ka,@k)f( ks U)
Recall: Up = u \ ug, flug,up) = [ flup,us)

uSEﬂ
UsFEUL



Dual Bethe vectors

Dual Bethe vectors are special polynomials in annihilation
operators (T»1, 131, 13p) applied to the dual pseudovacuum (O].

U ..
(Vg p(u; )| = <O|P(Tij(uk)aTij(Uk))a i > j D=v1,...,0p
a

Example: a=b=1

(1,1 (u; v)| = (0]To1(u)T32(v) + g(v,u)(0|T31(u)

We say that (¢, ;(u; v)| is a dual on-shell Bethe vector, if the
parameters v and v satisfy the system of Bethe equations

fug,ug) , — _ f(og, vg)
f (ug, uk)f(v’ k) r3(ok) = f (v, vg)

f(vka 77’)

r1(ug) =



Transfer matrix eigenvalues

On-shell Bethe vectors are eigenvectors
of the transfer matrix 7 (w) = tr T'(w).

T (W) p(u; 0)) = ANwlu, v) |1 p(4; 0))

(tap(@; )| T (w) = Nwlw, v) (Vg p(u;v)]



Transfer matrix eigenvalues

On-shell Bethe vectors are eigenvectors
of the transfer matrix 7 (w) = tr T'(w).

T (W) p(u; 0)) = ANwlu, v) |1 p(4; 0))
(tap(@; )| T (w) = Nwlw, v) (Vg p(u;v)]
AN wlu,v) = ri(w) f(w, w) + f(w,u) f(v,w) + r3(w) f(w,v)

f(Uk,ﬂk)f@, ). ra(op) = f (v, vi)

f(ug, ug) f (v, Ek)f(vk’ 2

r1(ug) =



Form factors of T, .(z)
/ / B B _
FCL(:E[;G )(Z) p— FCE’EZ;E )(Z|’ITLC7 ’1_}0’ ’ITLB,’I_)B) — <¢a/7b/(la’c; UC)|T€,€/(Z)|¢a,b(’UJB; ’UB)>

Here both (¢, (u®; v)| and [, ;(u”; v7)) are on-shell Bethe vectors.



Form factors of T, .(z)
FGD () = FEGD 10,5 8%,5%) = (g1 (@59 T, o (2) [0 (7% 77))

Here both (¢, (u®; v)| and [, ;(u”; v7)) are on-shell Bethe vectors.

f(’ljka )

r(uf) = fﬁ“k’ L 55 By, ra(of) = o T )
e (uf) = f(“k’ G, ) = F (0 . v )f( o 70)
( f(k?]{;

Generically {a%,9°} and {ua”, v”} are different solutions
of Bethe equations.



Form factors of T, .(z)

FGD () = FEGD 10,5 8%,5%) = (g1 (@59 T, o (2) [0 (7% 77))

The integers a and b are fixed. Then

a = a4+ 5671 — 56/71,

b' =b+ 643 —dc3.

The parameter z is an arbitrary complex.



Form factors of T, .(z)

(66)( Y= F (66)(z|u % uP,oP) = <¢a/ b/(u _C)| /(Z)Wa p(T”;

The integers a and b are fixed. Then

a = a4+ 5671 — 56/71,

b' =b+ 643 —dc3.

The parameter z is an arbitrary complex.

One can use ]—“( 6)(z) in order to calculate matrix elements
of more compllcated operators.

T, o (ITy(w) = 3 T, () Cett 00 W (0]
| | ban(@®) I0,(@; ) |

v (W)

v"))



Form factors of T, .(z)

FGD () = FEGD 10,5 8%,5%) = (g1 (@59 T, o (2) [0 (7% 77))

Inverse scattering problem

(N. Kitanine, J.M. Maillet, V. Terras, '99, '00)

In the SU(3)-invariant XXX Heisenberg chain

ES€ = T™71(0) T, 4(0) 7-™(0)
where Ef,,ff are elementary units in the site m

B =1®...ES°..®1, (E> ik = OjeOke



Form factors of T, .(z)

(66)( Y= F (66)(z|u % uP,oP) = (V. (0 09)|T., & (2) |1, p (0"

Inverse scattering problem

(N. Kitanine, J.M. Maillet, V. Terras, '99, '00)

In the SU(3)-invariant XXX Heisenberg chain

ES€ = T™71(0) T, 4(0) 7-™(0)

/\m—l(oh—LC”@C) (ee)

(ot (T3 TO)| B [1pg p(@?; 57)) = AT (0B, 57 Fap (0)

v"))



Form factors of T, .(z)

(66)( Y= F (66)(Z| oY P, b)) = (V. y (T _C)| /(Z)Wa p (0"

There exist 9 matrix elements T, .(z), thus there exist

O form factors. However not all of them are independent
due to symmetries of the R-matrix and morphisms of
the RTT = TTR relation.

T11(z) T12(2z) T13(2)
T(z) = | T21(z) To2(z) T23(%2)
T31(z) Tz32(z) T33(%2)

v"))



Form factors of T, .(z)

F (@) = FL5D GIat, 59 %, 5%) = (o y (@ 5T () [ o (@75 57))

There exist 9 matrix elements T, .(z), thus there exist

O form factors. However not all of them are independent
due to symmetries of the R-matrix and morphisms of
the RTT = TTR relation.

T(z) = | T21(2) T53(2)
T31(z) Tz32(z) T33(%2)

Simple transforms relate the form factor of T, . with
the ones of Ty . and Ty_ 4.



Form factors of T, .(z)

F (@) = FL5D GIat, 59 %, 5%) = (o y (@ 5T () [ o (@75 57))

There exist 9 matrix elements T, .(z), thus there exist

O form factors. However not all of them are independent
due to symmetries of the R-matrix and morphisms of
the RTT = TTR relation.

T13(2)7
T(z) = | T21(2) T53(z)
T31(z) Tz32(z) T33(2)

Simple transforms relate the form factor of T, ., with
the ones of Ty . and Ty_ 4,



Particular case

If a =0 or b= 0, then actually we deal with GL(2) case.
Let for definiteness b = 0.

[tha(w)) = |tha,0(u; 0)), (a(uw)| = (ta,0(u; 0)]



Particular case

If a =0 or b= 0, then actually we deal with GL(2) case.
Let for definiteness b = 0.
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We know a determinant representation for the scalar product
of an arbitrary Bethe vector with on-shell Bethe vector.



Particular case

If a =0 or b= 0, then actually we deal with GL(2) case.
Let for definiteness b = 0.

[tha()) = [tha,0(u; 0)), (a(uw)| = (ta,0(u; 0)]

We know a determinant representation for the scalar product
of an arbitrary Bethe vector with on-shell Bethe vector.

— C)
W=

it [19o(@”)) is an on-shell Bethe vector

ON(w|u?)
8u£

<¢a(ac)|¢a(ﬂB)> ~ dgt (




Particular case

If a =0 or b= 0, then actually we deal with GL(2) case.
Let for definiteness b = 0.

[tha(w)) = |tha,0(u; 0)), (a(uw)| = (ta,0(u; 0)]

We know a determinant representation for the scalar product
of an arbitrary Bethe vector with on-shell Bethe vector.

_B>
W=

it (q(u®)| is an on-shell Bethe vector

ON(w|u®)
8ug

<¢a(ﬂc)|¢a(ﬂB)> ~ dgt (




Particular case

Form factors are matrix elements of T, ,(z) between two on-shell
Bethe vectors

D (2) = (W (@) Tp () [tha(@?))



Particular case

Form factors are matrix elements of T, ,(z) between two on-shell
Bethe vectors

D (2) = (W (@) Tp () [tha(@?))

We can act with T, ,(z) either to the right or to the left.
AsS a result we obtain two types of determinant representations
for form factors:

ug
8/\(w\ﬂc)>

C
8uk

/ —B
() (2) ~ det (8/\;’“)'“ )> , w € {2, a7}

w € {z,u"}

(&) (2) ~ det (



Main results
/ /
Fag () = Fig GIaC, 0% %, 0%) = (0 0T, (2 8o (87 7))

We consider three cases: (¢,¢) = (1,1), (2,2), (1,2).



Main results

FOD () = FGD a0, 5087, 57) = (g y(@ 59T, () |a (a7 7))

We consider three cases: (¢,¢) = (1,1), (2,2), (1,2).

(&€) — det (e,€)
‘Fa,b (z) = ab a—l—b—l—lN

The pre-factor H, is (e, €')-independent

Hg,p = h(@?, a”)h(2°,0°) f (0%, 0") f(2,0") f (09, 2) AL () Au(@P)AL([07) Ay (0Y)

Recall: h(a?,a?) = H H h(uf,uf), etc.



Main results
/ / _ _
Fai (@) = P Glac %, 0%) = oy (8 0T 0 (2Dl (37 57)

We consider three cases: (e,€') = (1,1), (2,2), (1,2).

(676/) — H det (676/)
‘Fa,b (2) a,b a—l—b—l—lN

The pre-factor H, is (e, €')-independent

Hg,p = h(@?, a”)h(2°,0°) f (0%, 0") f(2,0") f (09, 2) AL () Au(@P)AL([07) Ay (0Y)

j>k j<k



Form factor of 717,

FOD(2) = t1,5(@8 5 T12(2) g p (@5 5%))

FP() =Hyy det N2

a+b+1

ON(z|u®, v¢
( ) ch |
J
a/\(xkhj’B? r‘—}B)
(*) A
K 81)]-

s a + 1

> b




Form factor of 717,

FOD(2) = t1,5(@8 5 T12(2) g p (@5 5%))

FP() =Hyy det N2

ad =a+1

b =

a+b+1
ON(z|u’, v®
4
ON(zi|u®?, vP
Yy

s a + 1

> b




Form factor of 717,

FOD(2) = t1,5(@8 5 T12(2) g p (@5 5%))

FP() =Hyy det N2

AN(L2) —

\

a+b+1

A

( (*)aA(ung,aC) (*)8/\(z|ﬂc,60) (*)aA(vng,@C) \
J J J
() ONEITE,TE) | ONGIE", ) | ) O a7, 57)
25 (%) — (%) ~
’Uj (9?)] a'U] )
’y a Y a Y ’

sa+ 1

> b




AN(L2) —

(

Form factor of 717,

sa+ 1

> b

N () (ug, uf N () (z, ujc N () (v, u?
N (uf o) N (z,0F N (W oP)
11 Y 1S



AN(L2) —

N (g, uf ) =

N (g, v7) =

(

Form factor of 717,

N () (ug, uf

N (2, uf

N (2, vF)

sa+ 1

> b

C

g(zg, uP) ON(xg|u,vv)

f(xg, uB) fF(v°, z1) g(g, u®)

—C

C
us
a]

g(v°, x) ON(xi|u?, v")

f(xg, uP) f(0°, zp) g(vB, )

B
8vj



Form factor of 717,

FOD(2) = t1,5(@8 5 T12(2) g p (@5 5%))

FP() =Hyy det N2

ad =a+1

b =

a+b+1
ON(z|u’, v®
4
ON(zi|u®?, vP
Yy

s a + 1

> b




Form factors of 771 and T5»
FLG(2) = (o (@8° 59 Tee(2) g 5 (%5 7))

Fay(2) = Hay  det N9



F ) =

<¢a b(u

Form factors of 771 and T5»

V| Te,e(2) g p (@75 7))

(6 €) (e,€)
F (z) = a b a—lql?jl:—l N

MO

8/\(a:k|ﬁ0, ’170)
8u]C

()

L sadditiondy YOW

a/\(CEMZ_LB, EB)
81}?

C
vy }




N(EO) =

Form factors of 771 and T5»

N (uf, uf)

N (W) (2, u?)

N (v, uf)

v Vath Yyt
N (g v N (2, 08) N (o P

>

> 1

> b

1



N(EO) =

2
v? =1,

Form factors of 771 and T5»

N (uf, uf)

N (W) (z, uf)

N (v, uf)

>

> 1

> b

v Yy s Yyt
N (g v N (2, 08) N (o P
3 " Y . 13

k=1,....a+b+1



Form factors of 771 and T5»

[ NP | N T N )

o= |y V0, YO

\ NO(E, o) N (0B N (¢ P

\

a 1 b
B —-B B
(1) _ uy, (f(V 7"%)_ _
V=14 ! <f(607u£) 1), k=1,....a
C C =C
1y _ v Te(flog,u”) _
Yo ipn = (f(vg,aB) 1), k=1,...,b



Form factors of 771 and T5»

[ NO@E ) | NG | NG ) )

>

T R R | P
> b
\ \ ./\/'(v)(uB,vf N N(v)(z,vf o ./\/'(v)(vg,vf / ) )

a 1 b

Ya(j_)l is an arbitrary number except the case 1 = u” and ¢ = v°”:

(1) _ r1(z) f(u, z)
Yotl = 55, 2) £z, )



How it was calculated

Scalar product of arbitrary Bethe vectors:

Sap = Sap(u”, 0% 4", 0%) = (g p(; V) 9 p(@”; 07))



How it was calculated

Scalar product of arbitrary Bethe vectors:

Sap = Sap(u”, 0% 4", 0%) = (g p(; V) 9 p(@”; 07))

C —C uICa/U’IBau]?7u]?
Sa b — Z 7“1(“[[ )7“3(1)1 )"“1(’“1 )"“3(”1[ ) Woart —B =C =B
vI , U1, U, U

(N. Reshetikhin '86)

The sum is taken over partitions:

/U’B — {’L_LIB,’U,]?} {UI 7U]IB} #UI - #UI _ 07 17 R

ﬁcz{alcaﬁ]?} {UI 7/01?} #ul _#77’1 =O,1,...,a



How it was calculated

Scalar product of arbitrary Bethe vectors:

Sap = Sap(u”, 0% 4", 0%) = (g p(; V) 9 p(@”; 07))

~C =B 7C =B

_ uy, Uy, Uy, U
a b — Zrl(uu >7“3(UIC)"°1(U1 )”’“3(711[ ) Wpart I ’ —IB’ —g7 —g
vI , U1, U, U

Recall: Tjj(u)|0> = rj(u)|0>

ri(ag) = J[ ri(uf), etc.
u§ ety



How it was calculated

Scalar product of arbitrary Bethe vectors:

Sap = Sap(u”, 0% 4", 0%) = (g p(; V) 9 p(@”; 07))

C —C uICafu’IBaugaul?
Sa b — Z 7“1(“[[ )7“3(1)1 )"“1(“1 )"“3(”1[ ) Woart —B =C =B
vI , U1, U, U

Wpart are rational functions (they depend on the R-matrix).

Some properties of Wpyt: N. Reshetikhin '86
Explicit form of Wpyrt: M. Wheeler '12
S. Belliard, S. Pakuliak, E. Ragoucy, N.S. '12



How it was calculated

Scalar product of arbitrary Bethe vectors:

Sap = Sap(u”, 0% 4", 0%) = (g p(; V) 9 p(@”; 07))

C —C uICafu’IBaugaul?
Sa b — Z 7“1(“[[ )7“3(1)1 )"“1(“1 )"“3(”1[ ) Woart —B =C =B

UI y U1, U 5 Vg

If »1 and r3 are free functional parameters, then for different
partitions the corresponding rational functions Wy, are labeled
by functionally independent factors r1(a§)rz(v9)r1(al)ra(vL).
Therefore we have no possibility to take the sum over partitions.



How i1t was calculated

Scalar product of arbitrary Bethe vectors:

Sap = Sap(u”, 0% 4", 0%) = (g p(; V) 9 p(@”; 07))

C —C ulcauIBau]CIjau]?
Sa b — Zrl(uu )7r3(71 )7“1(“1 )7“3(711[ ) Whoart —B —=C =B
vI , U1, U, U

\ . g
~"

New rational function

If 2P and ©” satisfy Bethe equations, then we can express
r1(af)r3(v¥) in terms of rational functions. Therefore we
can take the sum over partitions of the sets @” and 7°.



How it was calculated

Scalar product of arbitrary Bethe vectors:

Sap = Sap(u”, 0% 4", 0%) = (g p(; V) 9 p(@”; 07))

C —C ulcauIBau]CIjau]?
Sa b — Zrl(uu )7r3(71 )7“1(“1 )7“3(711[ ) Whoart —B —=C =B
’UI , U1, U, U

\ . g
~"

New rational function

In the case of form factors most of the parameters from the sets

7% and 7% also satisfy Bethe equations. Then the corresponding
r1(u$) and r3(v§) also can be expressed in terms of rational functions.
Therefore we obtain possibilities for further summation.



How it was calculated

All form factors can be presented in the form

FE9@) = ri(2) Wi + Wi 4ra(z) W)

/
The coefficients Wk(e’e) are rational functions given in terms
of the sums over partitions. These sums can be reduced
to determinants.
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The action of Ty3(z) on Bethe vectors is the simplest:
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Questions

Fé,lz)?))(z) = (Ygp1,p41 (@7 V) T13(2)|¢hg p(@”; 07)) = ?

The action of Ty3(z) on Bethe vectors is the simplest:
T13(2) Vg p(u; 0)) = [Yg41 p+1({2,u}; {2, 0}))

The actions of other operators give non-trivial linear
combinations of Bethe vectors, for example,

T12(2)|Yap(u;v)) = a [Pg415({z, u}; 0)) + Zﬁi [Yat+1,0({z5 0t {2,0:}))



Questions

FAD () = (g1 41 @0 5 Tr3()la p (8 59) = €
The action of Ty3(z) on Bethe vectors is the simplest:
T13(2) Vg p(u; 0)) = [Yg41 p+1({2,u}; {2, 0}))

One of possible ways to solve the problem is the standard
method based on Reshetikhin’'s representation.

(13)(2) = (Yat1,04+1@ 0D Woq1 p41({2, 07} {2,97))



Questions

FAD () = (g1 41 @0 5 Tr3()la p (8 59) = €
The action of Ty3(z) on Bethe vectors is the simplest:
T13(2) Vg p(u; 0)) = [Yg41 p+1({2,u}; {2, 0}))

Another possibility is to use a multiple integral representation for
scalar products involving on-shell Bethe vector (M. Wheeler '13).

FOD () = War1601@ 5 a1 41 (2,87 {2,57)



Questions

FID ) = (apg p 1 (@ T Tas (Dl p (@ 7)) = €

The action of Ty3(z) on Bethe vectors is the simplest:
T13(2) Vg p(u; 0)) = [Yg41 p+1({2,u}; {2, 0}))

Another possibility is to use a multiple integral representation for
scalar products involving on-shell Bethe vector (M. Wheeler '13).

How in some particular cases multiple integrals can be
calculated explicitly in terms of determinants?



T he original idea was to find a determinant representation
for the scalar product of an on-shell Bethe vector and

arbitrary Bethe vector.



T he original idea was to find a determinant representation
for the scalar product of an on-shell Bethe vector and

arbitrary Bethe vector.

This is too general object. In practice we usually deal
with some particular cases of arbitrary Bethe vectors.
Determinant representations for such scalar products

may exist.



The generalized model (r;(u) are free functional parameters)
also is too general object. In practice we deal with particular
cases of the generalized model. For, instance, in the
SU(3)-invariant Heisenberg chain one has r3(u) = 1.



The generalized model (r;(u) are free functional parameters)
also is too general object. In practice we deal with particular
cases of the generalized model. For, instance, in the
SU(3)-invariant Heisenberg chain one has r3(u) = 1.

~C =B 7C =B

_ _ _ _ Uy, Uy , U
Sap = ri(ug)r3(v )r1(ar)r3(vf) Wpart | — -5 —& —&
’UI y 'UI y ’U]I , 'U]I

~C =B =C

- - —B Ur , Uy auﬂaﬁ]?
Sa,b — Zrl(uﬂ )7“1(“1 ) Wpart —C =B =C =B
v, Up, U 5 Vg

We have a possibility to take the sum over partitions of the
sets v“ and 7.



The generalized model (r;(u) are free functional parameters)

also is too general object. In practice we deal with particular

cases of the generalized model. For, instance, in the

SU(3)-invariant Heisenberg chain one has r3(u) = 1.
uC’quuC,uB

a b — Z"“l(uﬂ )"“3(’01 )7“1(“1 )7’3(% ) Wpart ( I —IB —HC —1%

’UI y U1, U 5 Vg

~C =B

—C =B

C ur . U . Ur . U

ab — E :7“1(“11>7“1(U1 ) ”part . ,—IB’—g,—g
vI,vI,vH,vH

We have a possibility to take the sum over partitions of the
sets v¢ and ©”. However it is highly non-trivial to see that

Sa,b =0 for a<b



This fact immediately follows from the explicit form of
Bethe vectors. In the SU(3)-invariant Heisenberg chain

a5 (@; v)) =0, (Yo p(u;0)| =0 for a<b

(ha p(T 0D W p(@?07%)) =0  for  a<b



This fact immediately follows from the explicit form of
Bethe vectors. In the SU(3)-invariant Heisenberg chain

a5 (@; v)) =0, (Yo p(u;0)| =0 for a<b
(1ho p (0 V) g p(@”;07))y =0 for  a<b
One can hope to solve the problem of

scalar products and form factors iIn
specific models.



