Entanglement entropy and negativity in 1D conformal field theories

Pasquale Calabrese

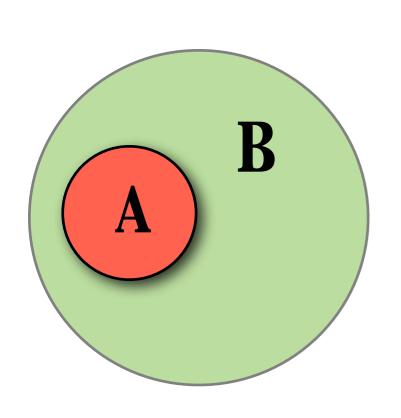
University of Pisa

Dijon, September 2013

Mainly Joint work with John Cardy and Erik Tonni

Entanglement entropy

Consider a system in a quantum state $|\psi\rangle$ $(\rho=|\psi\rangle\langle\psi|)$



$$\mathcal{H} = \mathcal{H}_{A} \otimes \mathcal{H}_{B}$$

Alice can measure only in A, while Bob in the remainder B Alice measures are entangled with Bob's ones: Schmidt deco

$$|\Psi\rangle = \sum_{n} c_{n} |\Psi_{n}\rangle_{A} |\Psi_{n}\rangle_{B}$$
 $c_{n} \geq 0, \sum_{n} c_{n}^{2} = 1$

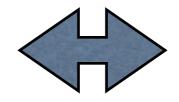
$$c_n \geq 0, \sum_n c_n^2 = 1$$

- If $c_1=1 \Rightarrow |\psi\rangle$ unentagled
- If c_i all equal $\Rightarrow |\psi\rangle$ maximally entangled

A natural measure is the entanglement entropy ($\rho_A = Tr_B \rho$)

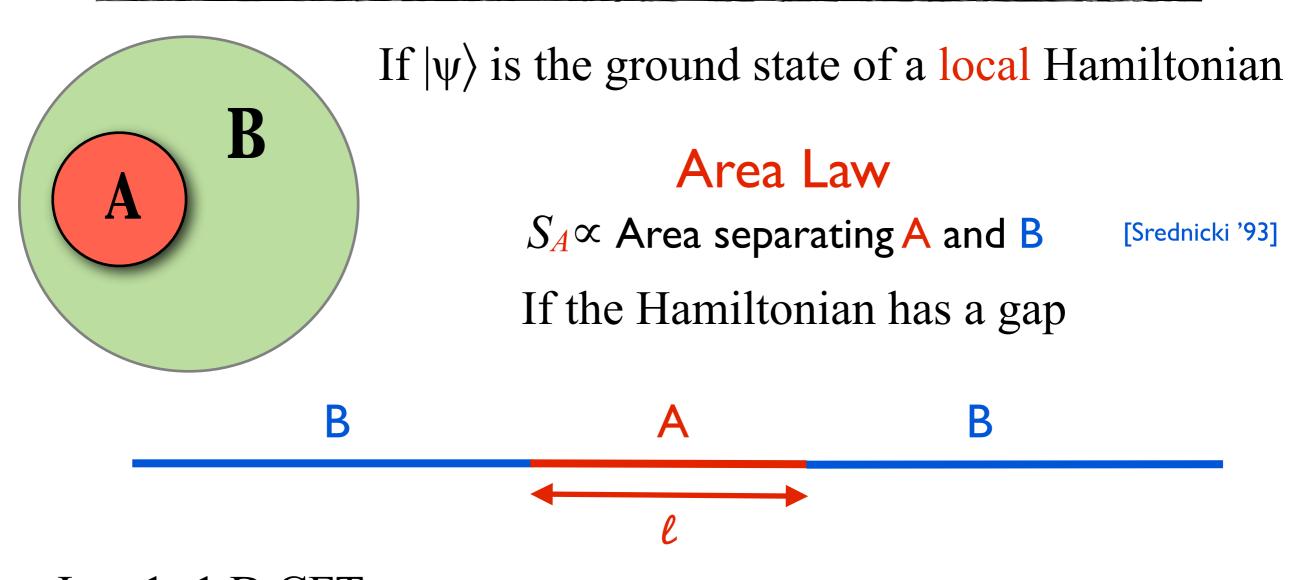
$$S_A \equiv -\text{Tr}\rho_A \ln \rho_A = S_B$$

But also Renyi
$$S_A^{(n)} \equiv 1/(1-n) \ln \operatorname{Tr} \rho_A^n$$



entanglement

Entanglement entropy



In a 1+1 D CFT Holzhey, Larsen, Wilczek '94

$$S_A = \frac{c}{3} \ln \ell$$

This is the most effective way to determine the central charge

Entanglement Entropy in QFT

The density matrix at temperature β^{-1} is $(Z = \operatorname{Tr} e^{-\beta \hat{H}})$

$$\rho(\{\phi_1(x)\}|\{\phi_2(x)\}) = Z^{-1}\langle\{\phi_2(x)\}|e^{-\beta\hat{H}}|\{\phi_1(x)\}\rangle$$

Euclidean path integral:

$$\rho = \int_{\beta}^{\phi_1} \frac{\tau = \beta}{Z} = \int \frac{[d\phi(x,\tau)]}{Z} \prod_{x} \delta(\phi(x,0) - \phi_2(x)) \prod_{x} \delta(\phi(x,\beta) - \phi_1(x))$$

$$S_E = \int_0^{\beta} L_E d\tau, \text{ with } L_E \text{ the Euclidean Lagrangian}$$

The trace sews together the edges along $\tau = 0$ and $\tau = \beta$ to form a cylinder of circumference β .

 $A = (u_1, v_1), \ldots, (u_N, v_N)$: ρ_A sewing together only those points x which are not in A, leaving open cuts for (u_j, v_j) along the the line $\tau = 0$.

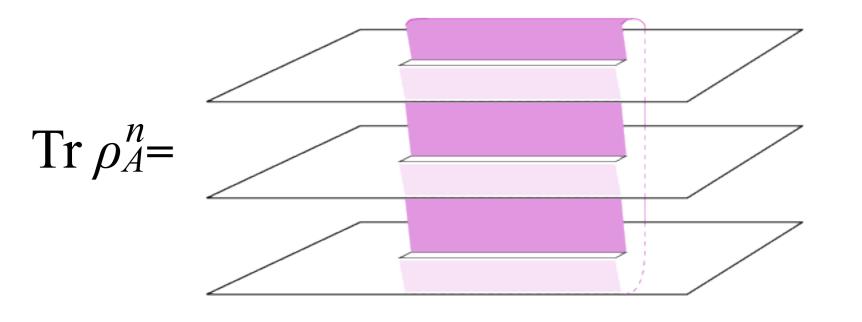
$$\langle \phi_1(x) | \rho_A | \phi_2(x) \rangle = \begin{pmatrix} \phi_1 & \text{cuts} \\ \phi_2 & & \end{pmatrix}$$

Replicas and Riemann surfaces

Replica trick:
$$S_A = -\lim_{n \to 1} \frac{\partial}{\partial n} \operatorname{Tr} \rho_A^n$$

[PC, Cardy 04]

 $\operatorname{Tr} \rho_A^n$ (for integer n) is the partition function on n of the above cylinders attached to form an n-sheeted Riemann surface

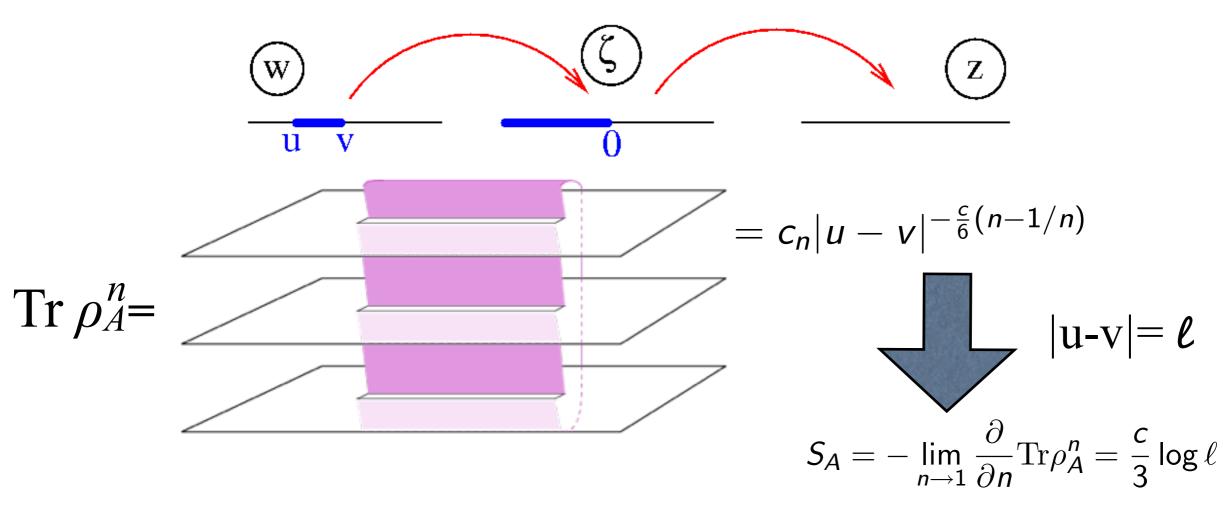


For n integer, $\text{Tr} \rho_A^n$ is the partition function on a n-sheeted Riemann surface

Riemann surfaces and CFT

This Riemann surface is mapped to the plane by

$$w \to \zeta = \frac{w-u}{w-v}$$
; $\zeta \to z = \zeta^{1/n} \Rightarrow w \to z = \left(\frac{w-u}{w-v}\right)^{1/n}$



 $\operatorname{Tr} \rho_A^n$ is equivalent to the 2-point function of twist fields

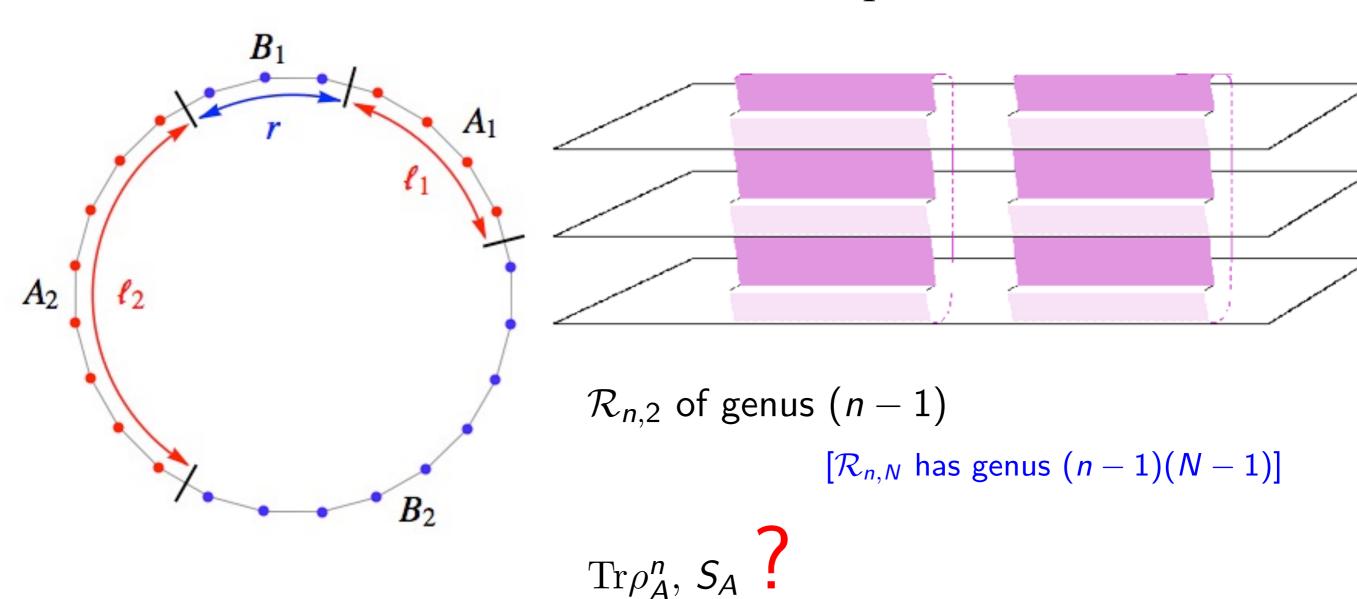
$$\operatorname{Tr} \rho_A^n = \langle \mathcal{T}_n(u) \, \bar{\mathcal{T}}_n(v) \rangle$$
 with scaling dimension $\Delta_{\mathcal{T}_n} = \frac{c}{12} \left(n - \frac{1}{n} \right)$

$$\Delta_{\mathcal{T}_n} = \frac{c}{12} \left(n - \frac{1}{n} \right)$$

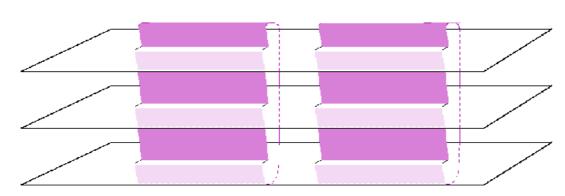
A more difficult problem

A= Disconnected regions

More complex Riemann surface



Disjoint interval: history



$$A = [u_1, v_1] \cup [u_2, v_2]$$

In 2004 we obtained

$$\operatorname{Tr} \rho_{\mathbf{A}}^{n} = c_{n}^{2} \left(\frac{|u_{1} - u_{2}||v_{1} - v_{2}|}{|u_{1} - v_{1}||u_{2} - v_{2}||u_{1} - v_{2}||u_{2} - v_{1}|} \right)^{\frac{c}{6}(n-1/n)}$$

Tested for free fermions in different ways Casini-Huerta, Florio et al.

For more complicated theories in 2008 Furukawa-Pasquier-Shiraishi and Caraglio-Gliozzi showed that it is incorrect!

$$\operatorname{Tr} \rho_{\mathsf{A}}^{n} = c_{n}^{2} \left(\frac{|u_{1} - u_{2}||v_{1} - v_{2}|}{|u_{1} - v_{1}||u_{2} - v_{2}||u_{1} - v_{2}||u_{2} - v_{1}|} \right)^{\frac{c}{6}(n-1/n)} F_{n}(x)$$

$$x = \frac{(u_1 - v_1)(u_2 - v_2)}{(u_1 - u_2)(v_1 - v_2)} = 4 - \text{point ratio}$$

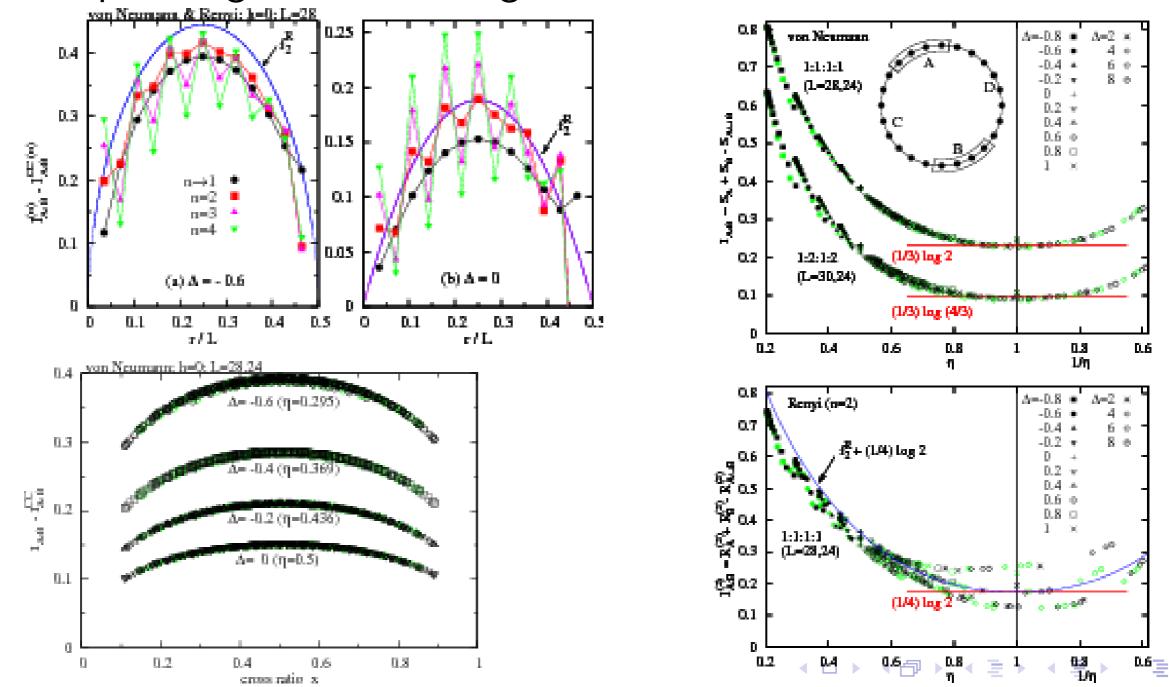
 $F_n(x)$ is a calculable function depending on the full operator content

Compactified boson

Furukawa Pasquier, Shiraishi '08

$$F_2(x) = \frac{\theta_3(\eta \tau)\theta_3(\tau/\eta)}{[\theta_3(\tau)]^2}, \qquad x = \left[\frac{\theta_2(\tau)}{\theta_3(\tau)}\right]^4 \quad \eta \propto R^2$$

Compared against exact diagonalization in XXZ chain



Compactified boson [PC, Cardy Tonni 09]

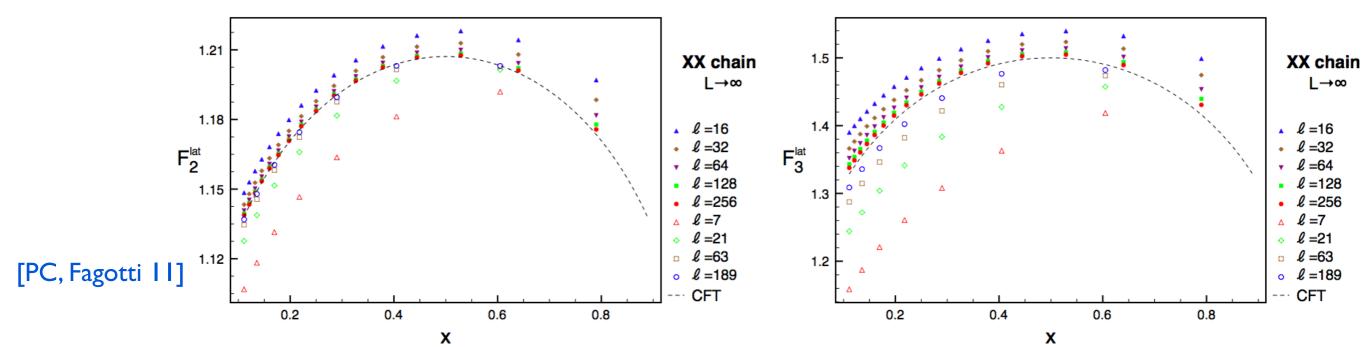
Using old results of CFT on orbifolds Dixon et al 86

$$F_n(x) = \frac{\Theta(0|\eta\Gamma)\Theta(0|\Gamma/\eta)}{[\Theta(0|\Gamma)]^2}$$

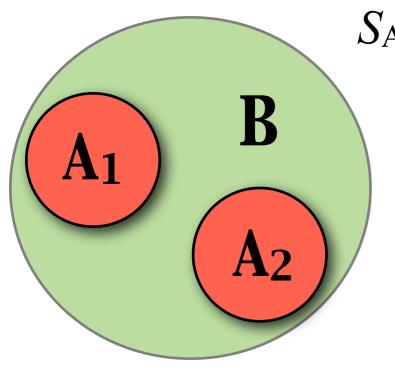
 Γ is an $(n-1) \times (n-1)$ matrix

$$\Gamma_{rs} = \frac{2i}{n} \sum_{k=1}^{n-1} \sin\left(\pi \frac{k}{n}\right) \beta_{\frac{k}{n}} \cos\left[2\pi \frac{k}{n}(r-s)\right]$$
with
$$\beta_{y} = \frac{H_{y}(1-x)}{H_{y}(x)}, \quad H_{y}(x) = {}_{2}F_{1}(y, 1-y; 1; x)$$

Riemann theta function $\Theta(z|\Gamma) \equiv \sum_{m \in \mathbb{Z}^{n-1}} \exp \left[i\pi \, m \cdot \Gamma \cdot m + 2\pi i m \cdot z \right]$



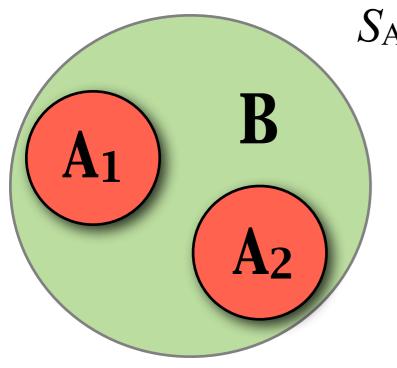
Entanglement of non-complementary parts



 $S_{A_1 \cup A_2}$ gives the entanglement between A and B

The mutual information $S_{A_1} + S_{A_2} - S_{A_1 \cup A_2}$ gives an upper bound on the entanglement between A_1 and A_2

Entanglement of non-complementary parts



 $S_{A_1 \cup A_2}$ gives the entanglement between A and B

The mutual information $S_{A_1} + S_{A_2} - S_{A_1 \cup A_2}$ gives an upper bound on the entanglement between A_1 and A_2

What is the entanglement between the two non-complementary parts A_1 and A_2 ?

A computable measure of entanglement exists: the logarithmic negativity [Vidal-Werner 02]

Entanglement negativity

Let us denote with $|e_i^{(1)}\rangle$ and $|e_j^{(2)}\rangle$ two bases in A₁ and A₂

 ρ is the density matrix of $A_1 \cup A_2$, not pure

The partial transpose is

$$\langle e_i^{(1)} e_j^{(2)} | \rho^{T_2} | e_k^{(1)} e_l^{(2)} \rangle = \langle e_i^{(1)} e_l^{(2)} | \rho | e_k^{(1)} e_j^{(2)} \rangle$$

And the logarithmic negativity

$$\mathcal{E}=\ln ||\rho^{T_2}||=\ln \operatorname{Tr}|\rho^{T_2}|$$

$$\operatorname{Tr}|\rho^{T_2}| = \sum_{i} |\lambda_i| = \sum_{\lambda_i > 0} \lambda_i - \sum_{\lambda_i < 0} \lambda_i$$

It measures "how much" the eigenvalues of ρ^{T_2} are negative because $\text{Tr}(\rho^{T_2})=1$

& is an entanglement monotone (does not decrease under LOCC)

It is also additive

A replica approach to negativity

• Let us consider traces of integer powers of ρ^{T_2}

$$\operatorname{Tr}(\rho^{T_2})^{n_e} = \sum_{i} \lambda_i^{n_e} = \sum_{\lambda_i > 0} |\lambda_i|^{n_e} + \sum_{\lambda_i < 0} |\lambda_i|^{n_e} \quad n_e \text{ even}$$

$$\operatorname{Tr}(\rho^{T_2})^{n_o} = \sum_{i} \lambda_i^{n_o} = \sum_{\lambda_i > 0} |\lambda_i|^{n_o} - \sum_{\lambda_i < 0} |\lambda_i|^{n_o} \quad n_o \text{ odd}$$

lacktriangle The analytic continuations from n_e and n_o are different

$$\mathcal{E} = \lim_{n_e \to 1} \ln \operatorname{Tr}(\rho^{T_2})^{n_e} \qquad \qquad \lim_{n_o \to 1} \operatorname{Tr}(\rho^{T_2})^{n_o} = \operatorname{Tr}\rho^{T_2} = 1$$

- For a pure state $\rho = |\psi\rangle\langle\psi|$ $\operatorname{Tr}(\rho^{T_2})^n = \begin{cases} \operatorname{Tr}\rho_2^n & n = n_o \text{ odd} \\ (\operatorname{Tr}\rho_2^{n/2})^2 & n = n_e \text{ even} \end{cases}$
- lacktriangle For $n_e \rightarrow 1$, we recover

$$\mathcal{E} = 2 \ln \mathrm{Tr} \rho_2^{1/2}$$
 Renyi entropy 1/2

 $\mathbf{B} \qquad \mathbf{A}_1 \qquad \mathbf{B} \qquad \mathbf{A}_2 \qquad \mathbf{B}$

 u_2

 V_2

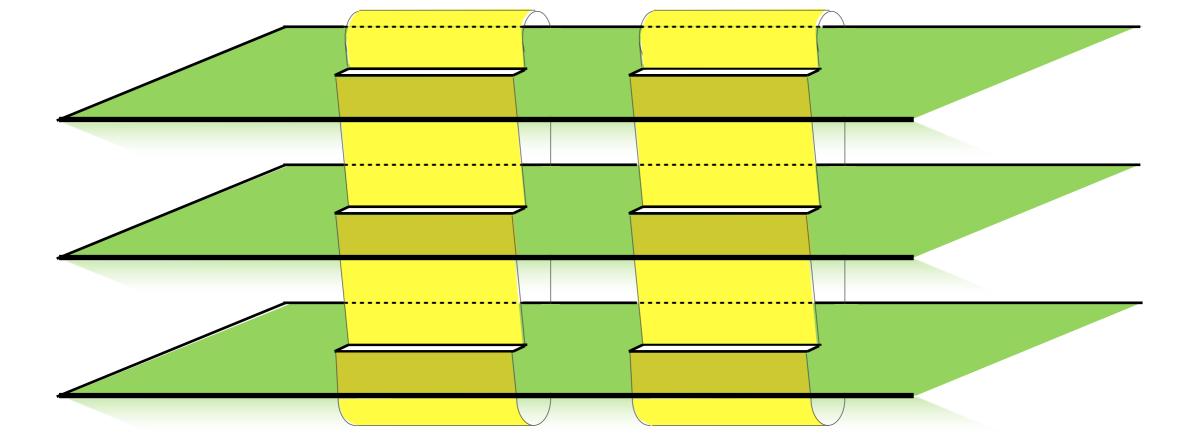
Tripartion:

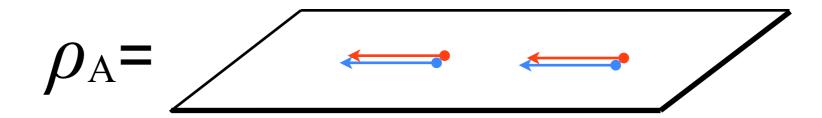
$$\rho_A$$
=

 V_1

 u_1

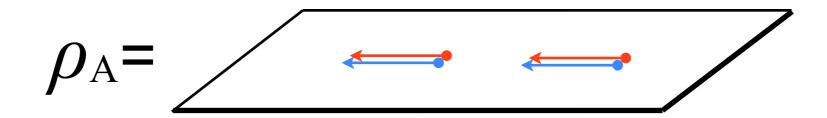
$$\operatorname{Tr}\rho_A^n = \langle \mathcal{T}_n(u_1)\bar{\mathcal{T}}_n(v_1)\mathcal{T}_n(u_2)\bar{\mathcal{T}}_n(v_2)\rangle$$





The partial transposition with respect to A_2 corresponds to exchange row and column indices in A_2

$$\rho_A^{T_2} =$$



The partial transposition with respect to A_2 corresponds to exchange row and column indices in A_2

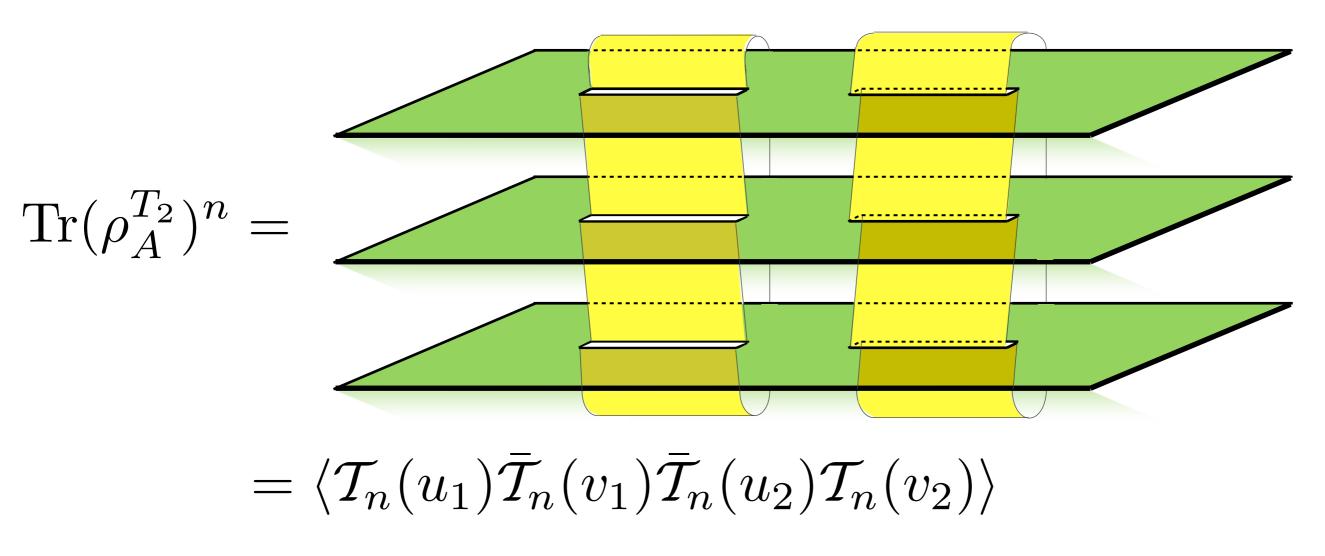
$$\rho_A^{T_2} =$$

It is convenient to reverse the order of indices

$$\rho_A^{C_2} = C \rho_A^{T_2} C = \underbrace{\hspace{1cm}}$$

$$\operatorname{Tr}(\rho_A^{T_2})^n = \operatorname{Tr}(\rho_A^{C_2})^n$$

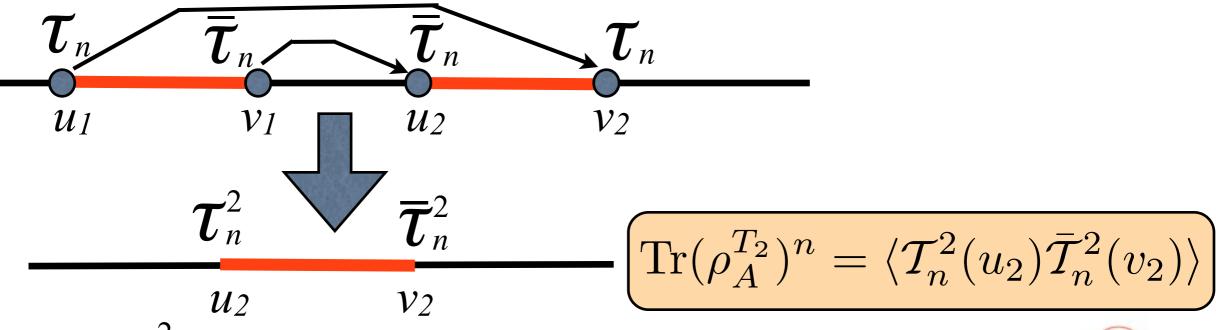
Gluing together *n* of the above



The partial transposition exchanges two twist operators

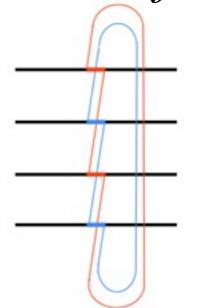
 $\text{Tr}(\rho_A \rho_A^{T_2})$ is the partition function on a Klein bottle

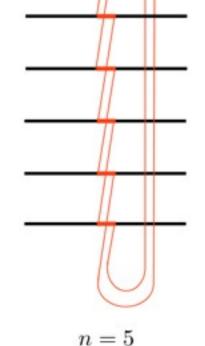
Pure States in QFT



 \mathcal{T}_n^2 connects the *j-th* sheet with the (j+2)-th one:

- For $n=n_e$ even, the R-surface decouples in two $n_e/2$ surface
- For $n=n_o$ odd, the n_o -sheeted surface remains n_o -sheeted





$$\operatorname{Tr}(\rho_{A}^{T_{2}})^{n_{e}} = (\langle \mathcal{T}_{n_{e}/2}(u_{2})\bar{\mathcal{T}}_{n_{e}/2}(v_{2})\rangle)^{2} = (\operatorname{Tr}\rho_{A_{2}}^{n_{e}/2})^{2}$$
$$\operatorname{Tr}(\rho_{A}^{T_{2}})^{n_{o}} = \langle \mathcal{T}_{n_{o}}(u_{2})\bar{\mathcal{T}}_{n_{o}}(v_{2})\rangle = \operatorname{Tr}\rho_{A_{2}}^{n_{o}},$$

Pure States in CFT

From
$$\operatorname{Tr}(\rho_A^{T_2})^n = \langle \mathcal{T}_n^2(u_2) \bar{\mathcal{T}}_n^2(v_2) \rangle$$
 and

$$\operatorname{Tr}(\rho_A^{T_2})^{n_e} = (\langle \mathcal{T}_{n_e/2}(u_2)\bar{\mathcal{T}}_{n_e/2}(v_2)\rangle)^2 = (\operatorname{Tr}\rho_{A_2}^{n_e/2})^2$$

$$\operatorname{Tr}(\rho_A^{T_2})^{n_o} = \langle \mathcal{T}_{n_o}(u_2)\bar{\mathcal{T}}_{n_o}(v_2)\rangle = \operatorname{Tr}\rho_{A_2}^{n_o},$$

$$\mathcal{T}_{n_o}^2$$
 has dimension $\Delta_{\mathcal{T}_{n_o}^2} = \frac{c}{12} \left(n_o - \frac{1}{n_o} \right)$, the same as \mathcal{T}_{n_o}

$$\mathcal{T}_{n_e}^2$$
 has dimension $\Delta_{\mathcal{T}_{n_e}^2} = \frac{c}{6} \left(\frac{n_e}{2} - \frac{2}{n_e} \right)$

$$||\rho_A^{T_2}|| = \lim_{n_e \to 1} \operatorname{Tr}(\rho_A^{T_2})^{n_e} \propto \ell^{\frac{c}{2}} \Rightarrow \mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{cnst}$$

Two adjacent intervals

3-point function:

$$\operatorname{Tr}(\rho_A^{T_2})^n = \langle \mathcal{T}_n(-\ell_1)\bar{\mathcal{T}}_n^2(0)\mathcal{T}_n(\ell_2)\rangle$$

$$\operatorname{Tr}(\rho_A^{T_2})^{n_e} \propto (\ell_1 \ell_2)^{-\frac{c}{6}(\frac{n_e}{2} - \frac{2}{n_e})} (\ell_1 + \ell_2)^{-\frac{c}{6}(\frac{n_e}{2} + \frac{1}{n_e})}$$

$$||\rho_A^{T_2}|| \propto \left(\frac{\ell_1 \ell_2}{\ell_1 + \ell_2}\right)^{\frac{c}{4}} \Rightarrow \mathcal{E} = \frac{c}{4} \ln \frac{\ell_1 \ell_2}{\ell_1 + \ell_2} + \text{cnst}$$

$$\operatorname{Tr}(\rho_A^{T_2})^{n_o} \propto (\ell_1 \ell_2 (\ell_1 + \ell_2))^{-\frac{c}{12}(n_o - \frac{1}{n_o})}$$

Two disjoint intervals

Being $\operatorname{Tr} \rho_A^n$ and $\operatorname{Tr} (\rho_A^{T_2})^n$ related by an exchange of twists:

$$\mathcal{G}_n(y) = (1-y)^{\frac{c}{3}(n-\frac{1}{n})} \mathcal{F}_n\left(\frac{y}{y-1}\right)$$

$$\mathcal{E}(y) = \lim_{n_e \to 1} \ln \mathcal{G}_{n_e}(y) = \lim_{n_e \to 1} \ln \left[\mathcal{F}_{n_e} \left(\frac{y}{y - 1} \right) \right]$$

Two disjoint intervals

$$\mathcal{E}(y) = \lim_{n_e \to 1} \ln \mathcal{G}_{n_e}(y) = \lim_{n_e \to 1} \ln \left[\mathcal{F}_{n_e} \left(\frac{y}{y - 1} \right) \right]$$

Consequences:

- The Negativity is a scale invariant quantity!
- Since $\mathcal{F}_n(y) = \sum_i y^{2\Delta_i} s_n(i)$, $\mathcal{E}(y)$ vanishes in y=0 faster than any power
- lacktriangle For $u_1 \rightarrow v_2$, $y \rightarrow 1$ and we recover the result for adjacent intervals

$$G(y) \rightarrow -c/4 \ln(1-y) + \text{possible log-log corrections}$$

i.e. the negativity diverges for $y \rightarrow 1$

Finite Systems

A finite system of length L with PBC can be obtained mapping the the plane to the cylinder with the conformal mapping

$$z \to w = \frac{L}{2\pi} \log z$$

This has the net effect to replace any length with

$$\ell \to \frac{L}{\pi} \sin \frac{\pi \ell}{L}$$

Thus for two adjacent intervals we have

$$\mathcal{E}(y) = \frac{c}{4} \ln \left(\frac{L}{\pi} \frac{\sin(\frac{\pi \ell_1}{L}) \sin(\frac{\pi \ell_2}{L})}{\sin \frac{\pi (\ell_1 + \ell_2)}{L}} \right) + \text{cnst}$$

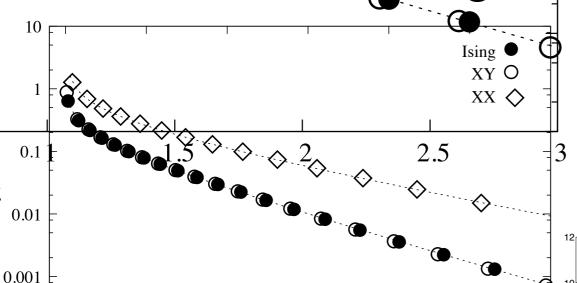
while for two disjoint ones of the same length ℓ at distance r

$$\mathcal{E}(y) = \lim_{n_e \to 1} \ln \mathcal{G}_{n_e}(y)$$
 with $y = \left(\frac{\sin \pi \ell / L}{\sin \pi (\ell + r) / L}\right)^2$

Numerical data: previous results

DMRG results for Ising and XX chain. Two disjoint intervals Wichterich et al

2.5



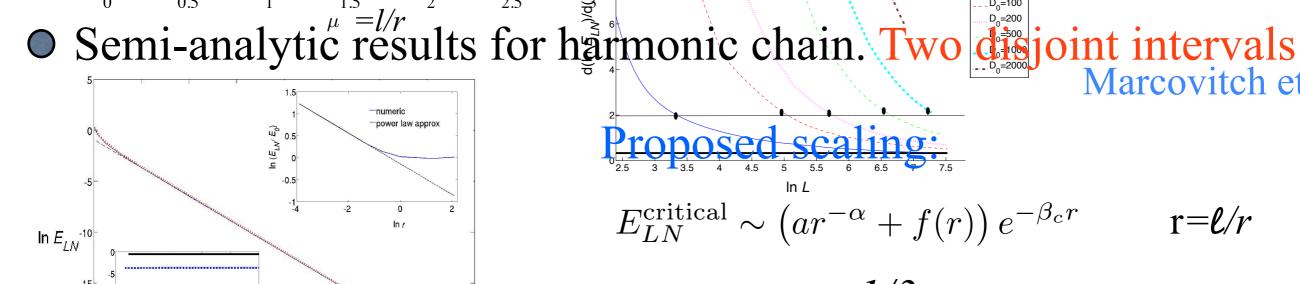
Proposed scaling: $\mathcal{N}(\rho_{SE}) \sim \mu^{-h} e^{-\alpha \mu}$

$$\alpha$$
=0.96, h =0.47 XX

$$\alpha$$
=1.68, h =0.38 Ising

Good exponential, bad power law

Fit unstable



0.5

Proposed scaling:

$$E_{LN}^{\text{critical}} \sim \left(ar^{-\alpha} + f(r)\right)e^{-\beta_c r}$$

$$r = \ell/r$$

Marcovitch et al

$$\alpha \sim 1/3$$

Good exponential, bad power law

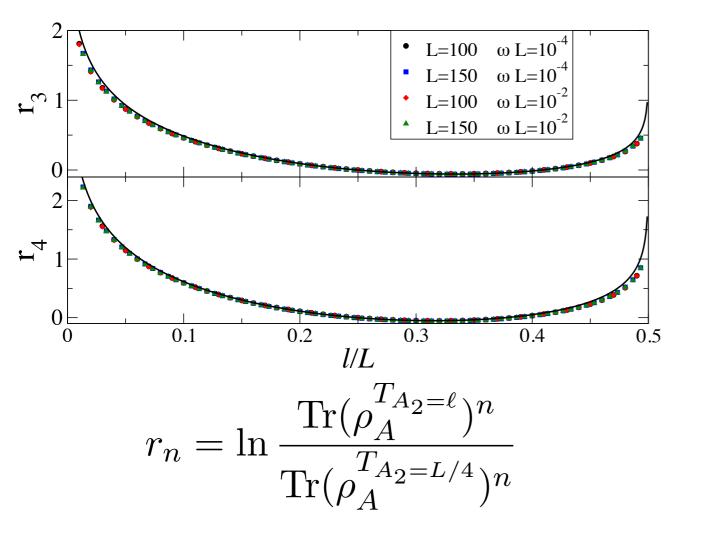
Numerical data: new results

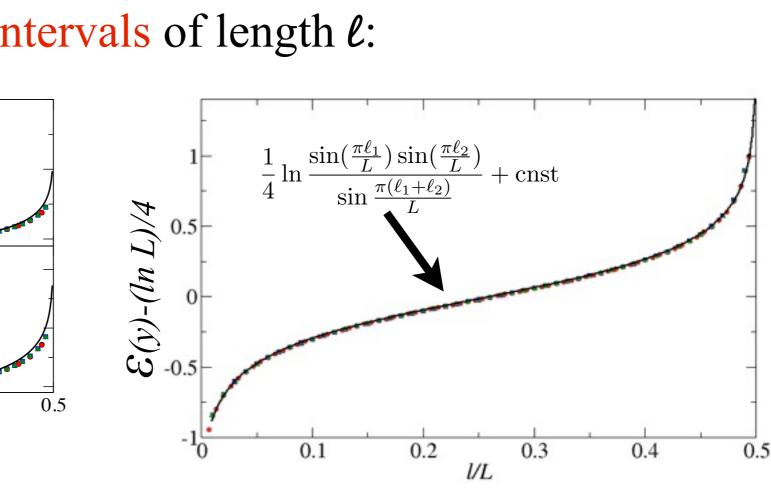
Semi-analytic results for harmonic chain

[Audenauert et al 02] [Peschel 99+]

$$H = \frac{1}{2} \sum_{j=1}^{L} \left[p_j^2 + \omega^2 q_j^2 + (q_{j+1} - q_j)^2 \right]$$
 critical for $\omega = 0$

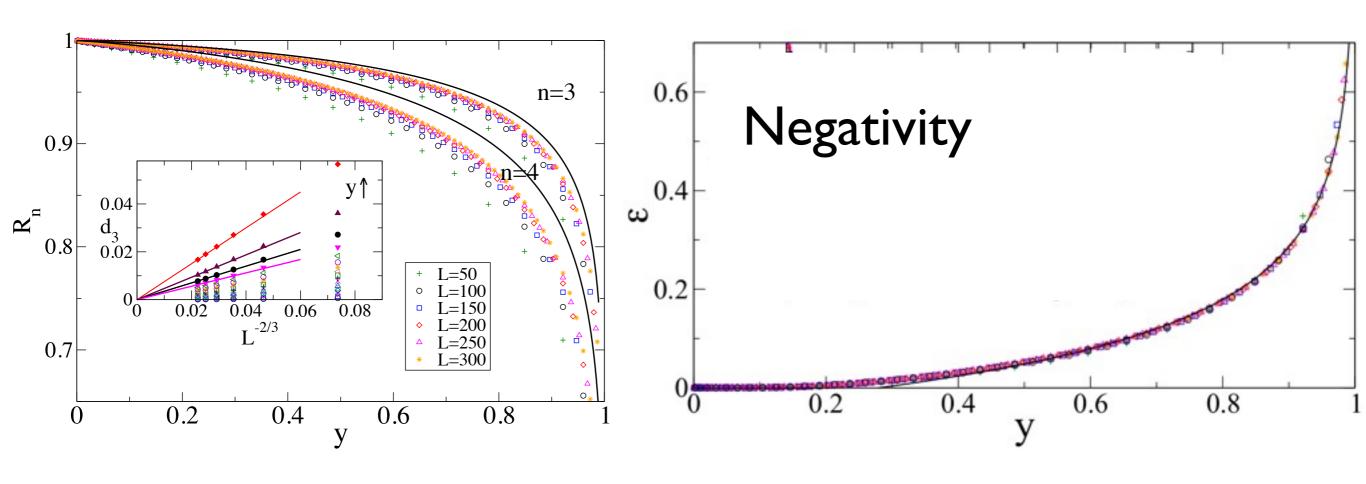
Two adjacent intervals of length ℓ :





Numerical data: new results

Two disjoint intervals of length ℓ :



$$R_n(y) \equiv \frac{\operatorname{Tr}(\rho_A^{T_2})^n}{\operatorname{Tr}\rho_A^n}$$

$$\mathcal{E}(y) \to -1/4 \ln(1-y) + 1/2\ln(-\ln(1-y))$$

$$R_n^{\text{CFT}}(y) = \begin{bmatrix} \frac{(1-y)^{\frac{2}{3}(n-\frac{1}{n})} \prod_{k=1}^{n-1} F_{\frac{k}{n}}(y) F_{\frac{k}{n}}(1-y)}{\prod_{k=1}^{n-1} \text{Re}(F_{\frac{k}{n}}(\frac{y}{y-1}) \bar{F}_{\frac{k}{n}}(\frac{1}{1-y}))} \end{bmatrix}^{\frac{1}{2}} \begin{array}{c} \textbf{Problem:} \\ \textbf{No analytic continuation} \\ \end{bmatrix}$$

Generalizations

Already published

- Systems with boundaries
- Tr $(\rho_A^{T_2})^n$ for two intervals for compactified boson
- Massive theories
- Tr $(\rho_A^{T_2})^n$ for two intervals for the Ising CFT

and to be published soon

Finite temperature

Open problems

- Work out the analytic continuation at $n_e \rightarrow 1$ for 2 intervals, at least in some limiting cases (even for the entanglement entropy)
- An approach for calculating the negativity for free fermions is still missing!
- Out of equilibrium?
- AdS/CFT for the negativity?