Correlation functions of the SOS model from algebraic Bethe Ansatz

Finite-size results

Véronique TERRAS

CNRS & ENS Lyon, France

Dijon - September 2013

Collaborator : D. Levy-Bencheton (PhD student, ENS Lyon).

- "An algebraic Bethe ansatz approach to form factors and correlation functions of the cyclic eight-vertex solid-on-solid model" J. Stat. Mech. (2013) P04015, arXiv:1212.0246
- "Spontaneous staggered polarizations of the cyclic SOS model from algebraic Bethe Ansatz" arXiv:1304.7814
- "Multi-point local height probabilities of the CSOS model within the algebraic Bethe Ansatz framework", in preparation

Algebraic Bethe ansatz approach to correlation functions

- Correlation functions in the ABA framework: first results determinant representation for scalar products of Bethe states (Slavnov) + solution of the quantum inverse problem
 - ---- determinant representation for form factors in finite volume
 - elementary building blocks of correlation functions as multiple sums in finite volume and as multiple integrals in the thermodynamic limit

Or Two-point function: sum up elementary blocks or form factors

- →→ Master equation representation for the finite chain: N-fold multiple integral representation for the correlation function in finite volume
- **O** Asymptotic analysis of the two-point function
 - \rightsquigarrow from the Master equation
 - \rightsquigarrow from the series over form factors

Method essentially developed for XXZ chain or Quantum Bose gas What about more complicated models ?

XYZ Heisenberg chain and 8VSOS model

A natural generalization of the XXZ Heisenberg chain is the XYZ chain:

$$H_{XYZ} = \sum_{m=1}^{N} \left\{ J_x \sigma_m^x \sigma_{m+1}^x + J_y \sigma_m^y \sigma_{m+1}^y + J_z \sigma_m^z \sigma_{m+1}^z \right\}$$

related to the 8-vertex model:

2-d square lattice model
link
$$\rightarrow \epsilon_j = \pm$$

vertex \rightarrow Boltzmann weight
$$R^{8V}(z_1/z_2)_{\epsilon'_1,\epsilon'_2}^{\epsilon_1,\epsilon_2} = z_2 \stackrel{\epsilon'_1}{\leftarrow} \frac{\epsilon_1}{\epsilon_2}$$

$$z_1$$

$$\mathbf{R}^{8V}(z) = \begin{pmatrix} a(z;p) & 0 & 0 & d(z;p) \\ 0 & b(z;p) & c(z;p) & 0 \\ 0 & c(z;p) & b(z;p) & 0 \\ d(z;p) & 0 & 0 & a(z;p) \end{pmatrix} \qquad \begin{array}{l} z = \text{spectral parameter} \\ p = \text{elliptic parameter} \\ a, b, c, d = \text{elliptic} \\ \text{theta functions of } z \end{array}$$

No charge conservation through a vertex \rightarrow no direct Bethe Ansatz solution Baxter's solution (Ann.Phys.73) \rightarrow map onto an IRF model (8VSOS model) eigenstates of 8V model given in terms of Bethe eigenstates of 8VSOS model

1 61

2-d square lattice model vertex \rightarrow local height s_j $s_j - s_k = \pm 1$ (adjacent) face \rightarrow Boltzmann weight

$$\mathsf{R}(u_i - \xi_j; \mathbf{s})_{\epsilon'_i, \epsilon'_j}^{\epsilon_i, \epsilon_j} = \begin{cases} \mathbf{s} & \mathbf{s} + \epsilon'_i \\ \mathbf{s} + \epsilon_j & \mathbf{s} + \epsilon_i \\ \mathbf{s} + \epsilon_j & \mathbf{s} + \epsilon_i + \epsilon_j \\ \mathbf{u}_i & \mathbf{s} + \epsilon'_i + \epsilon'_j \end{cases}$$

$$\mathbf{R}(u;s) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & b(u;s) & c(u;s) & 0 \\ 0 & c(u;-s) & b(u;-s) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 $b(u; s) = \frac{[s+1][u]}{[s][u+1]}$ $c(u; s) = \frac{[s+u][1]}{[s][u+1]}$ u = spectral parameter s = dynamical parameter $[u] = \theta_1(\eta u; \tau) \qquad p = e^{2\pi i \tau}$

satisfying the Dynamical Quantum Yang-Baxter Equation:

$$\begin{aligned} \mathbf{R}_{12}(u_1 - u_2; s + h_3) & \mathbf{R}_{13}(u_1; s) & \mathbf{R}_{23}(u_2; s + h_1) \\ &= \mathbf{R}_{23}(u_2; s) & \mathbf{R}_{13}(u_1; s + h_2) & \mathbf{R}_{12}(u_1 - u_2; s) & \text{with} & h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{aligned}$$

Charge conservation, solvable by Bethe Ansatz

ABA for the 8VSOS model

Felder, Varchenko (1996) : representations of $E_{\tau,\eta}(sl_2)$

• Monodromy matrix:

$$egin{aligned} T_{a,1\dots N}(u;\xi_1,\dots,\xi_N;s) &= R_{aN}(u-\xi_N;s+h_1+\dots+h_{N-1})\dots R_{a1}(u-\xi_1;s)\ &= egin{pmatrix} A(u;s) & B(u;s)\ C(u;s) & D(u;s) \end{pmatrix}_{[a]} \in \operatorname{End}(\mathbb{C}^2\otimes\mathcal{H}) \end{aligned}$$

$$\widehat{T}(u) = \begin{pmatrix} \widehat{A}(u) & \widehat{B}(u) \\ \widehat{C}(u) & \widehat{D}(u) \end{pmatrix}_{[a]} = T(u; \widehat{s}) \begin{pmatrix} \widehat{\tau}_s & 0 \\ 0 & \widehat{\tau}_s^{-1} \end{pmatrix}_{[a]} \in \operatorname{End}(\mathbb{C}^2 \otimes \operatorname{Fun}(\mathcal{H})),$$

where $\hat{\tau}_s \hat{s} = (\hat{s} + 1) \hat{\tau}_s$, and the action of \hat{s} and $\hat{\tau}_s$ on functions $f \in \operatorname{Fun}(\mathcal{H})$ are given as $[\hat{s}f](s) = sf(s)$, $[\hat{\tau}_s f](s) = f(s+1)$.

• Transfer matrix: $\hat{t}(u) = \hat{A}(u) + \hat{D}(u)$

 \rightsquigarrow preserve the space Fun($\mathcal{H}[0]$) of functions of the dynamical parameter s with values in the zero-weight space $\mathcal{H}[0]$ of \mathcal{H}

 \rightsquigarrow $[\hat{t}(u), \hat{t}(v)] = 0$ on Fun($\mathcal{H}[0]$)

- Space of states: functions $\psi : s \mapsto \psi(s) \in \mathcal{H}[0]$
 - unrestricted case (η generic): $s \in \mathbf{C}_{\mathbf{s_0}} = \{s_0 + j, j \in \mathbb{Z}\}$
 - cyclic case ($\eta = r/L$ rational): $s \in \mathbf{C}_{s_0}^{\mathsf{L}} = \{s_0 + j, j \in \mathbb{Z}/L\mathbb{Z}\}$

- reference state: $|0\rangle = \bigotimes_{j=1}^{N} {1 \choose 0}_{[j]}$ $A(u;s)|0\rangle = a(u)|0\rangle, \quad D(u;s)|0\rangle = \frac{[s-1]}{[s+N-1]}d(u)|0\rangle$
- Bethe states: Suppose that the set of spectral parameters {*v*₁,...,*v_n*}, satisfies the system of Bethe equations

$$a(v_j)\prod_{l\neq j}\frac{[v_l-v_j+1]}{[v_l-v_j]} = (-1)^{rk}\omega^{-2} \ d(v_j)\prod_{l\neq j}\frac{[v_j-v_l+1]}{[v_j-v_l]}, \quad j=1,\ldots n,$$

with N=2n+kL $(k\in\mathbb{Z})$ and $\omega^L=(-1)^{rn}$ (for $\eta=r/L$), then the states

$$|\{v\},\omega\rangle:s\mapsto\varphi_{\omega}(s)B(v_1;s)B(v_2;s-1)\dots B(v_n;s-n+1)|0\rangle, \\ \langle\{v\},\omega\mid:s\mapsto\langle 0|C(v_n;s-n)\dots C(v_2;s-2)C(v_1;s-1)\bar{\varphi}_{\omega}(s),$$

with $\varphi_{\omega}(s) = \omega^s \prod_{j=1}^n \frac{[1]}{[s-j]}, \qquad \bar{\varphi}_{\omega}(s) = \omega^{-s} \prod_{j=0}^{n-1} \frac{[s+j]}{[1]},$

are eigenstates of the transfer matrix

$$\begin{split} \left[\widehat{t}(u) \mid \{v\}, \omega \right](s) &= A(u; s) \mid \{v\}, \omega \right\rangle(s+1) + D(u; s) \mid \{v\}, \omega \right\rangle(s-1) \\ &= \tau(u; \{v\}, \omega) \mid \{v\}, \omega \right\rangle(s), \\ \left[\left\langle \left\{v\}, \omega \mid \widehat{t}(u)\right](s) &= \left\langle \left\{v\}, \omega \mid (s-1) \right. A(u; s-1) + \left\langle \left\{v\}, \omega \mid (s+1) \right. D(u; s+1) \right. \right\} \\ &= \tau(u; \left\{v\}, \omega) \left\langle \left\{v\}, \omega \mid (s), \right\} \end{split}$$

with eigenvalue

$$\tau(u; \{v\}, \omega) = \omega \ \mathsf{a}(u) \prod_{l=1}^{n} \frac{[v_l - u + 1]}{[v_l - u]} + (-1)^{rk} \omega^{-1} \mathsf{d}(\underline{u}) \prod_{l=1}^{n} \frac{[u - v_l + 1]}{[v_l - v_l]}.$$

Compute $\langle \{u\}, \omega_u | \{v\}, \omega_v \rangle$ in a compact and manageable form ?

• for XXZ:

- ∃ determinant representation for the scalar product when one of the state is a Bethe eigenstate (Slavnov, 1989)
- this representation is related to Izergin's determinant representation for the partition function with domain wall boundary conditions:

$$Z_N(\{u\};\{\xi\}) \propto \det_N \frac{\sinh \eta}{\sinh(u_i - \xi_j)\sinh(u_i - \xi_j + \eta)}$$

- for SOS:
 - no single determinant representation for the partition function with DWBC (Rosengren; Pakuliak, Rubtsov, Silantyev)

$$Z_{N}(\lbrace u \rbrace; \lbrace \xi \rbrace; s) \propto \sum_{\substack{S \subset \lbrace 1, \dots, N \rbrace}} (-1)^{|S|} \frac{[\gamma + s - |S|]}{[s - |S|]} \det_{N} \frac{[u_{j} - \xi_{k}^{S} + \gamma]}{[\gamma][u_{j} - \xi_{k}^{S}]}$$

with $\xi_{k}^{S} = \begin{cases} \xi_{k} - 1 & \text{if } k \in S \\ \xi_{k} & \text{if } k \notin S \end{cases}$ (γ arbitrary).

Scalar product of Bethe states

Let $\{u\}, \omega_u$ be solution of the Bethe equations and $\{v\}, \omega_v$ be arbitrary, and consider the quantities:

• "partial scalar product" (depending on the value of the height *s*):

 $S_n(\{u\}; \{v\}; s) = \langle 0 | C(u_n; s-n) \dots C(u_1; s-1) B(v_1; s) \dots B(v_n; s-n+1) | 0 \rangle$

 \rightsquigarrow can be computed from Rosengren's formula for the partition function with DWBC using the expressions of *B* and *C* in the F-basis (Maillet, Sanchez de Santos 96; Kitanine, Maillet, V.T. 99; Albert et al. 00) \rightsquigarrow sum of determinants

• "total scalar product" (cyclic case $\eta = r/L$ rational):

$$\langle \{u\}, \omega_u \,|\, \{v\}, \omega_v \rangle = \frac{1}{L} \sum_{s \in s_0 + \mathbb{Z}/L\mathbb{Z}} \bar{\varphi}_{\omega_u}(s) \,\varphi_{\omega_v}(s) \, S_n(\{u\}; \{v\}; s)$$

 \rightsquigarrow The "total scalar product" (and the norm) can be expressed as a single determinant

Remark. The partial scalar product is not a scalar product of Bethe-type states (function δ_s instead of φ_{ω_v} , $\bar{\varphi}_{\omega_u}$)

Computation of the partial scalar product (I)

$$S_{n}(\{u\}; \{v\}; s) = \langle 0 | C(u_{n}; s - n) \dots C(u_{1}; s - 1)B(v_{1}; s) \dots B(v_{n}; s - n + 1) | 0 \rangle$$

= $\langle 0 | \widetilde{C}(u_{n}; s - n) \dots \widetilde{C}(u_{1}; s - 1)\widetilde{B}(v_{1}; s) \dots \widetilde{B}(v_{n}; s - n + 1) | 0 \rangle$

where \tilde{C} and \tilde{B} stand for the expressions of C and B in the *F*-basis (Maillet, Sanchez de Santos 96; Kitanine, Maillet, V.T. 99; Albert et al. 00) :

$$\begin{split} \widetilde{B}(u;s) &\equiv F_{1...N}(s) \, B(u;s) \, F_{1...N}^{-1}(s-1) \\ &= \frac{[s-1]}{[s+h_{1...N}]} \sum_{i=1}^{N} \sigma_{i}^{-} \frac{[1][s+\sum_{l\neq i} h_{l} + u - \xi_{i}]}{[s+\sum_{l\neq i} h_{l}][u-\xi_{i}+1]} \mathop{\otimes}\limits_{j\neq i} \begin{pmatrix} \frac{[u-\xi_{j}]}{[u-\xi_{j}+1]} & 0 \\ 0 & \frac{[\xi_{j}-\xi_{i}+1]}{[\xi_{j}-\xi_{i}]} \end{pmatrix}_{[j]}, \\ \widetilde{C}(u;s) &\equiv F_{1...N}(s) \, B(u;s) \, F_{1...N}^{-1}(s+1) \\ &= \sum_{i=1}^{N} \sigma_{i}^{+} \frac{[1][s-u+\xi_{i}]}{[s][u-\xi_{i}+1]} \mathop{\otimes}\limits_{j\neq i} \begin{pmatrix} \frac{[u-\xi_{j}]}{[u-\xi_{j}+1]} & 0 \\ 0 & 1 \end{pmatrix}_{[j]}. \end{split}$$

Computation of the partial scalar product (II)

 \rightsquigarrow computable by recursion:

Consider

$$G_{\ell_{k+1},\ldots,\ell_n}^{(k)}(\{u\};\{v_1,\ldots,v_k\};s) = \langle 0 | \widetilde{C}(u_n;s-n)\ldots\widetilde{C}(u_1;s-1)\widetilde{B}(v_1;s)\ldots\widetilde{B}(v_k;s-k+1) \quad \underbrace{|\ell_{k+1},\ldots,\ell_n\rangle},$$

state with n-k "-" spins at positions $\ell_{k+1} \dots \ell_n$

such that

•
$$G_{\ell_1,\ldots,\ell_n}^{(0)}(\{u\};\emptyset;s) \propto Z_n(\{u\};\{\xi_{\ell_j}\};s)$$

• $G^{(n)}(\{u\};\{v\};s) = S_n(\{u\};\{v\};s)$
• $G_{\ell_{k+1},\ldots,\ell_n}^{(k)}(\{u\};\{v_1,\ldots,v_k\};s) = \sum_{\ell_k \neq \ell_{k+1},\ldots,\ell_n} G_{\ell_k,\ldots,\ell_n}^{(k-1)}(\{u\};\{v_1,\ldots,v_{k-1}\};s)$
 $\times \underbrace{\langle \ell_k,\ldots,\ell_n | \widetilde{B}(v_k;s-k+1) | \ell_{k+1},\ldots,\ell_n \rangle},$

 \rightsquigarrow recursively modifies Rosengren's sum over determinants (at each step, use of Bethe equations for $\{u\},\omega_u)$

 \rightsquigarrow results into additional sum over subsets of $1, \ldots, n$

easy to compute in the F-basis

"Partial" vs "total" scalar products

• "partial scalar product" (for generic η):

$$S_{n}(\{u\}; \{v\}; s) = f(\{u\}, \{v\}, \gamma, s) \sum_{\substack{s, \bar{s} \subset \{1, \dots, n\} \\ \bar{s}, \bar{s} \subset \{1, \dots, n\}}} (-1)^{|S| + |\bar{s}|} \frac{[\gamma + s - |S| + |\bar{S}|]}{[s - |S| + |\bar{S}|]}$$

$$\times \prod_{j \notin \bar{s}} \left\{ \frac{a(v_{j})}{d(v_{j})} \prod_{t=1}^{n} [u_{t} - v_{j} + 1] \right\} \prod_{j \in \bar{s}} \left\{ \omega_{u}^{-2} \prod_{t=1}^{n} [u_{t} - v_{j} - 1] \right\} \det_{n} \frac{[u_{i} - \xi_{j}^{S\bar{S}} + \gamma]}{[\gamma][u_{i} - \xi_{j}^{S\bar{S}}]}$$
with $\xi_{k}^{S\bar{s}} = \begin{cases} \xi_{k} - 1 & \text{if } k \notin S \text{ and } k \notin \bar{S} \\ \xi_{k} + 1 & \text{if } k \notin S \text{ and } k \in \bar{S} \end{cases} (\gamma \text{ arbitrary}).$

э

"Partial" vs "total" scalar products

• "partial scalar product" (for generic η):

$$S_{n}(\{u\}; \{v\}; s) = f(\{u\}, \{v\}, \gamma, s) \sum_{\substack{s, \bar{s} \subset \{1, \dots, n\}}} (-1)^{|S| + |\bar{s}|} \frac{[\gamma + s - |S| + |\bar{s}|]}{[s - |S| + |\bar{s}|]}$$

$$\times \prod_{j \notin \bar{s}} \left\{ \frac{a(v_{j})}{d(v_{j})} \prod_{t=1}^{n} [u_{t} - v_{j} + 1] \right\} \prod_{j \in \bar{s}} \left\{ \omega_{u}^{-2} \prod_{t=1}^{n} [u_{t} - v_{j} - 1] \right\} \det_{n} \frac{[u_{i} - \xi_{j}^{S\bar{s}} + \gamma]}{[\gamma][u_{i} - \xi_{j}^{S\bar{s}}]}$$
with $\xi_{k}^{S\bar{s}} = \begin{cases} \xi_{k} - 1 & \text{if } k \notin S \text{ and } k \notin \bar{S} \\ \xi_{k} + 1 & \text{if } k \notin S \text{ and } k \in \bar{S} \end{cases} (\gamma \text{ arbitrary}).$

• "total scalar product" (cyclic case $\eta = r/L$ rational): $\langle \{u\}, \omega_u \mid \{v\}, \omega_v \rangle = \frac{1}{L} \sum_{s \in s_0 + \mathbb{Z}/L\mathbb{Z}} \bar{\varphi}_{\omega_u}(s) \varphi_{\omega_v}(s) S_n(\{u\}; \{v\}; s)$

→ the s-dependence can be simplified for $\gamma = -|u| + |v|$:

$$ar{arphi}_{\omega_u}(s) \, arphi_{\omega_v}(s) \, f(\{u\}, \{v\}, |\mathbf{v}| - |\mathbf{u}|, s) = \left(rac{\omega_v}{\omega_u}
ight)^s \, ilde{f}(\{u\}, \{v\})$$

 \rightsquigarrow the sum over *s* can be relabelled:

$$\sum_{s \in s_0 + \mathbb{Z}/L\mathbb{Z}} \left(\frac{\omega_v}{\omega_u}\right)^s \frac{[\gamma + s - |S| + |\tilde{S}|]}{[s - |S| + |\tilde{S}|]} = \left(\frac{\omega_v}{\omega_u}\right)^{|S| - |\tilde{S}|} \sum_{\substack{s \in s_0 + \mathbb{Z}/L\mathbb{Z} \\ s \in s_0 + \mathbb{Z}/L\mathbb{Z}}} \left(\frac{\omega_v}{\omega_u}\right)^s \frac{[\gamma + s]}{[s]} = 0$$

"Partial" vs "total" scalar products

• "partial scalar product" (for generic η):

$$S_{n}(\{u\}; \{v\}; s) = f(\{u\}, \{v\}, \gamma, s) \sum_{\substack{s, \tilde{s} \subset \{1, \dots, n\} \\ j \notin \tilde{s}}} (-1)^{|S|+|\tilde{s}|} \frac{[\gamma + s - |S| + |\tilde{s}|]}{[s - |S| + |\tilde{s}|]} \\ \times \prod_{j \notin \tilde{s}} \left\{ \frac{a(v_{j})}{d(v_{j})} \prod_{t=1}^{n} [u_{t} - v_{j} + 1] \right\} \prod_{j \in \tilde{s}} \left\{ \omega_{u}^{-2} \prod_{t=1}^{n} [u_{t} - v_{j} - 1] \right\} \det_{n} \frac{[u_{i} - \xi_{j}^{S\tilde{s}} + \gamma]}{[\gamma][u_{i} - \xi_{j}^{S\tilde{s}}]} \\ \text{with } \xi_{k}^{S\tilde{s}} = \begin{cases} \xi_{k} - 1 & \text{if } k \in S \text{ and } k \notin \tilde{S} \\ \xi_{k} + 1 & \text{if } k \notin S \text{ and } k \in \tilde{S} \\ \xi_{k} & \text{otherwise} \end{cases} (\gamma \text{ arbitrary}).$$

• "total scalar product" (cyclic case $\eta = r/L$ rational):

$$\begin{split} \langle \{u\}, \omega_{u} \,|\, \{v\}, \omega_{v} \rangle &= \left\{ \frac{1}{L} \sum_{s \in s_{0} + \mathbb{Z}/L\mathbb{Z}} \frac{\omega_{v}^{s}}{\omega_{u}^{s}} \frac{[\gamma + s]}{[s]} \right\} \frac{\prod_{t=1}^{n} d(u_{t}) \cdot \det_{n} \left[\Omega_{\gamma}(\{u\}; \{v\})\right]}{\prod_{j < k} [u_{j} - u_{k}] [v_{k} - v_{j}]}, \\ \text{with } \gamma &= -|u| + |v| \text{ and} \\ \left[\Omega_{\gamma}(\{u\}; \{v\})\right]_{ij} &= \frac{1}{[\gamma]} \left\{ \frac{[u_{i} - v_{j} + \gamma]}{[u_{i} - v_{j}]} - \frac{\omega_{v}}{\omega_{u}} \frac{[u_{i} - v_{j} + \gamma + 1]}{[u_{i} - v_{j} + 1]} \right\} a(v_{j}) \prod_{t=1}^{n} [u_{t} - v_{j} + 1] \\ &+ \frac{1}{[\gamma]} \left\{ \frac{[u_{i} - v_{j} + \gamma]}{[u_{i} - v_{j}]} - \frac{\omega_{u}}{\omega_{v}} \frac{[u_{i} - v_{j} + \gamma - 1]}{[u_{i} - v_{j} - 1]} \right\} \omega_{u}^{-2} d(v_{j}) \prod_{t=1}^{n} [u_{t} - v_{j} - 1]. \end{split}$$

5900

"Square of the norm"

$$\langle \{u\}, \omega_u | \{u\}, \omega_u \rangle = \frac{1}{(-[0]')^n} \frac{\prod_{t=1}^n d(u_t)}{\prod_{j \neq k} [u_j - u_k]} \cdot \mathsf{det}_n \left[\frac{\partial}{\partial u_k} \mathcal{Y}_{\omega_u}(u_j | \{u\}) \right]$$

where

$$\mathcal{Y}_{\omega}(v|\{u\}) = a(v) \prod_{t=1}^{n} [u_t - v + 1] + \omega^{-2} d(v) \prod_{t=1}^{n} [u_t - v - 1]$$

$$\langle \{u\}, \omega_u \,|\, \{u\}, \omega_u \rangle = \frac{1}{(-[0]')^n} \frac{\prod_{t=1}^n a(u_t) d(u_t) \prod_{j,k=1}^n [u_j - u_k + 1]}{\prod_{j \neq k} [u_j - u_k]} \cdot \det_n \left[\Phi(\{u\}) \right]$$

where

$$\begin{split} \left[\Phi(\{u\}) \right]_{ij} &= \delta_{ij} \left\{ \log' \frac{a}{d}(u_i) + \sum_{t=1}^n K(u_i - u_t) \right\} - K(u_i - u_j), \\ \text{with} \quad K(u) &= \frac{[u-1]'}{[u-1]} - \frac{[u+1]'}{[u+1]} \end{split}$$

Remark. The expression does not depend on L \rightarrow valid for generic η

э

"Partial" scalar product for $\eta = r/L$

The partial scalar product is not a scalar product of Bethe-type states (function δ_s instead of $\bar{\varphi}_{\omega_u} \varphi_{\omega_v}$):

$$S_n(\lbrace u \rbrace; \lbrace v \rbrace; s) = \sum_{\tilde{s} \in s_0 + \mathbb{Z}/L\mathbb{Z}} \delta_s(\tilde{s}) S_n(\lbrace u \rbrace; \lbrace v \rbrace; \tilde{s})$$

However, in the rational case $\eta = r/L$, the space of discrete, *L*-periodic numerical functions of *s* is *L*-dimensional with a basis given by functions of the type $\bar{\varphi}_{\omega_u} \varphi_{\omega}$

→ partial scalar product can be expressed as a sum of L determinants

This can alternatively be seen by means of an identity for theta functions:

 $\frac{[u+\gamma][0]'}{[u][\gamma]} = \sum_{k=0}^{L-1} e^{2\pi i \eta k u} \frac{[Lu+\gamma+k\frac{\tau}{\eta}]_L[0]'_L}{[Lu]_L[\gamma+k\frac{\tau}{\eta}]_L} \quad \text{with } [u]_L = \theta_1(\eta u; L\tau)$ applied to $u = s - |S| + |\tilde{S}|$: $\frac{[\gamma+s-|S|+|\tilde{S}|]}{[s-|S|+|\tilde{S}|]} = \sum_{k=0}^{L-1} e^{2\pi i \eta k (s-|S|+|\tilde{S}|)} \frac{[Ls_0+\gamma+k\frac{\tau}{\eta}]_L[0]'_L}{[Ls_0]_L[\gamma+k\frac{\tau}{\eta}]_L}$ "Partial" scalar product for $\eta = r/L$

$$\begin{split} & \frac{[\gamma + s - |S| + |\tilde{S}|]}{[s - |S| + |\tilde{S}|]} = \sum_{k=0}^{L-1} e^{2\pi i \eta k (s - |S| + |\tilde{S}|)} \frac{[Ls_0 + \gamma + k\frac{\tau}{\eta}]_L [0]'_L}{[Ls_0]_L [\gamma + k\frac{\tau}{\eta}]_L} \\ & S_n(\{u\}; \{v\}; s) \propto \sum_{\substack{S, \tilde{S} \subset \{1, \dots, n\}}} (-1)^{|S| + |\tilde{S}|} \frac{[\gamma + s - |S| + |\tilde{S}|]}{[s - |S| + |\tilde{S}|]} \\ & \times \prod_{j \notin \tilde{S}} \left\{ \frac{a(v_j)}{d(v_j)} \prod_{t=1}^n [u_t - v_j + 1] \right\} \prod_{j \in \tilde{S}} \left\{ \omega_u^{-2} \prod_{t=1}^n [u_t - v_j - 1] \right\} \det_n \frac{[u_i - \xi_j^{S\tilde{S}} + \gamma]}{[\gamma][u_i - \xi_j^{S\tilde{S}}]} \end{split}$$

can be rewritten as

$$S_{n}(\{u\};\{v\};s) \propto \sum_{\ell=0}^{L-1} q^{\ell s} \frac{[Ls_{0} + \gamma + \ell_{\eta}^{T}]_{L}[0]_{L}^{\prime}}{[Ls_{0}]_{L}[\gamma + \ell_{\eta}^{T}]_{L}} \det_{n} \left[\Omega_{\gamma}^{(\ell)}(\{u\};\{v\})\right],$$
with $q = e^{2\pi i \eta}$ and $[u]_{L} = \theta_{1}(\eta u; L\tau)$, and
$$\left[\Omega_{\gamma}^{(\ell)}(\{u\};\{v\})\right]_{ij} = \frac{1}{[\gamma]} \left\{ \frac{[u_{i} - v_{j} + \gamma]}{[u_{i} - v_{j}]} - \frac{q^{-\ell} [u_{i} - v_{j} + \gamma + 1]}{[u_{i} - v_{j} + 1]} \right\} a(v_{j}) \prod_{t=1}^{n} [u_{t} - v_{j} + 1]$$

$$+ \frac{(-1)^{rk}}{[\gamma]} \left\{ \frac{[u_{i} - v_{j} + \gamma]}{[u_{i} - v_{j}]} - q^{\ell} \frac{[u_{i} - v_{j} + \gamma - 1]}{[u_{i} - v_{j} - 1]} \right\} \omega_{u}^{-2} d(v_{j}) \prod_{t=1}^{n} [u_{t} - v_{j} - 1].$$

cf. Rosengren's formula for Z_N at $\eta=r/L$

э

Determinant representation for finite-size form factors

solution of the quantum inverse problem:

$$E_i^{++} = \prod_{k=1}^{i-1} \widehat{t}(\xi_k) \cdot \widehat{A}(\xi_i) \cdot \prod_{k=i}^{1} \left[\widehat{t}(\xi_k)\right]^{-1}$$
$$E_i^{--} = \prod_{k=1}^{i-1} \widehat{t}(\xi_k) \cdot \widehat{D}(\xi_i) \cdot \prod_{k=i}^{1} \left[\widehat{t}(\xi_k)\right]^{-1}$$

express form factors in terms of scalar products
 These are not a priori scalar products of Bethe-type states but the s-dependent part can again be simplified !

→ representation in terms of determinants:

$$\langle \{u\}, \omega_u | \sigma_i^z | \{v\}, \omega_v \rangle = \left\{ \prod_{k=1}^{i-1} \frac{\tau(\xi_k, \{u\}, \omega_u)}{\tau(\xi_k, \{v\}, \omega_v)} \right\} \left\{ \frac{1}{L} \sum_{s \in s_0 + \mathbb{Z}/L\mathbb{Z}} \omega_v^{-s} \omega_v^s \frac{[\gamma + s]}{[s]} \right\}$$
$$\times \frac{\prod_{t=1}^n d(u_t)}{\prod_{k < l} [u_k - u_l] [v_l - v_k]} \det_n \left[\Omega_\gamma(\{u\}; \{v\}) - 2\mathcal{P}_\gamma(\{u\}; \{v\}|\xi_l) \right]$$

with $\gamma = |v| - |u|$ and $\mathcal{P}_{\gamma}(\{u\}; \{v\}|\xi_i)$ is a rank 1 matrix

Remark. The *s*-dependent part can no longer be simplified if acting with several local operators \rightsquigarrow more complicated formulas a = b + a = b + a = b

Generating function for two-point function

$$\langle \mathcal{Q}_{1,m}^{\kappa} \rangle = \frac{\langle \{u\}, \omega_u \mid \mathcal{Q}_{1,m}^{\kappa} \mid \{u\}, \omega_u \rangle}{\langle \{u\}, \omega_u \mid \{u\}, \omega_u \rangle},\tag{1}$$

where $|\left\{u\right\},\omega_{u}\left.\right\rangle$ is a ground state of the transfer matrix, and

$$\mathcal{Q}_{1,m}^{\kappa} = \prod_{j=1}^{m} \left(\frac{1+\kappa}{2} + \frac{1-\kappa}{2} \sigma_j^z \right) = \prod_{j=1}^{m} \left(E_j^{11} + \kappa E_j^{22} \right)$$

 \rightsquigarrow it gives the probability that two sites on a same vertical line at distance *m* have a difference of height $\ell \leq m$ (given by the coefficient of $\kappa^{\frac{m-\ell}{2}}$ of the κ -polynomial (1))

- solution of the quantum inverse problem: $Q_{1,m}^{\kappa} = \prod_{i=1}^{m} \hat{t}_{\kappa}(\xi_i) \prod_{i=m}^{r} [\hat{t}(\xi_i)]^{-1}$ with $\hat{t}_{\kappa} = \hat{A} + \kappa \hat{D}$
- for η = r/L and L large enough, the eigenstates | {v}_κ, ω_v ⟩ (for n = N/2) of t_κ(u) form a complete basis of the space of states Fun(H[0]) (Felder, Tarasov & Varchenko 96)
- sum over form factors:

$$\begin{split} \langle \mathcal{Q}_{1,m}^{\kappa} \rangle &= \sum_{\{\mathbf{v}\}_{\kappa},\omega_{\nu}} \frac{\langle \{u\},\omega_{u} \mid \{v\}_{\kappa},\omega_{\nu}\rangle \langle \{v\}_{\kappa},\omega_{\nu} \mid \mathcal{Q}_{1,m}^{\kappa} \mid \{u\},\omega_{u}\rangle}{\langle \{u\},\omega_{u} \mid \{u\},\omega_{u}\rangle \langle \{v\}_{\kappa},\omega_{\nu} \mid \{v\}_{\kappa},\omega_{\nu}\rangle} \\ &= \sum_{\{v\}_{\kappa},\omega_{\nu}} \prod_{i=1}^{m} \frac{\tau_{\kappa}(\xi_{i};\{v\}_{\kappa},\omega_{\nu})}{\tau(\xi_{i};\{u\},\omega_{u})} \frac{\langle \{u\},\omega_{u} \mid \{v\}_{\kappa},\omega_{\nu}\rangle \langle \{v\}_{\kappa},\omega_{\nu} \mid \{u\},\omega_{u}\rangle}{\langle \{u\},\omega_{u} \mid \{u\},\omega_{u}\rangle \langle \{v\}_{\kappa},\omega_{\nu} \mid \{v\}_{\kappa},\omega_{\nu}\rangle_{q,q}} \end{split}$$

Master equation for the generating function

- → replace sums by contour integrals:

$$\begin{split} \langle \mathcal{Q}_{1,m}^{\kappa} \rangle &= \frac{1}{n!} \frac{\left([0]' \right)^{2n}}{L^2} \sum_{\omega} \oint_{\Gamma(\{v\}_{\kappa})} \frac{d^n z}{(2i\pi)^n} \prod_{i=1}^m \frac{\tau_{\kappa}(\xi_i; \{z\}, \omega)}{\tau(\xi_i; \{u\}, \omega_u)} \\ &\times \left\{ \sum_{s \in \mathsf{C}_{\mathsf{s}_0}^{\mathsf{L}}} \frac{\omega^s}{\omega_u^s} \frac{[\gamma_z + s]}{[s]} \right\} \left\{ \sum_{s \in \mathsf{C}_{\mathsf{s}_0}^{\mathsf{L}}} \frac{\omega_u^s}{\omega^s} \frac{[-\gamma_z + s]}{[s]} \right\} \\ &\times \frac{\det_n \left[\Omega_{\gamma_z}(\{u\}; \{z\}|\{u\}) \right] \cdot \det_n \left[\Omega_{-\gamma_z}^{(\kappa)}(\{z\}; \{u\}|\{z\}) \right]}{\det_n \left[\frac{\partial}{\partial u_k} \mathcal{Y}_{1;\omega_u}(u_j; \{u\}) \right] \cdot \prod_{j=1}^n \mathcal{Y}_{\kappa;\omega}(z_j; \{z\})} \end{split}$$
(2)

with $\gamma_z = |z| - |u|$. The sum in (2) is taken over all $\omega \in \mathbb{C}$ such that $(-1)^{rn} \omega^L = 1$, and the integration contour is such that it surrounds (with index 1) all poles corresponding to solutions $\{v\}_{\kappa}$ with n = N/2 of the κ -twisted Bethe equations associated with ω .

Going further: local height probabilities

What about explicitly height-dependent quantities such as (multi-point) local height probabilities ?

$$\mathbf{P}_{\alpha_{1},\ldots,\alpha_{m}}(\mathbf{s}) = \left(\sum_{|\Psi_{g}\rangle}\right) \frac{\langle \Psi_{g} | \delta_{\mathbf{s}} E_{1}^{\alpha_{1},\alpha_{1}} \dots E_{m}^{\alpha_{m},\alpha_{m}} | \Psi_{g}\rangle}{\langle \Psi_{g} | \Psi_{g}\rangle}$$

= probability to find a sequence of heights

$$s, s + \alpha_1, s + \alpha_1 + \alpha_2, \dots, s + \alpha_1 + \alpha_2 + \dots + \alpha_m$$

on m successive sites of a given vertical line of the lattice

 \rightsquigarrow acting with local operators on the ground state $|\Psi_g\rangle$, one obtains a new state (which is no more of Bethe type)

 \rightarrow additional complexity with respect to elementary building blocks of XXZ: extra sum (*L* terms) + deformation of the determinant

$$\mathbf{P}_{\alpha_{1},...,\alpha_{m}}(s) = \sum_{\{b_{p}\}} G_{\alpha_{1},...,\alpha_{m}}^{\gamma}(s;\{v_{b_{p}}\},\{\xi\}) \sum_{\ell=0}^{L-1} q^{\ell s} a_{\gamma}^{(\ell)}(s_{0}) \frac{\det_{n}\left[\Phi_{\gamma;\{b_{p}\}}^{(\ell)}(\{v\})\right]}{\det_{n}[\Phi(\{v\})]}$$

To be continued...

• Summary of the first part (this talk)

- * Partial scalar product as sums of determinants for generic η (can be reduced to a sum of *L* terms for $\eta = r/L$)
- $\star~$ Determinant representation for scalar products/"norms" of Bethe states $(\eta=r/L)$
- \star Determinant representation for finite-size form factors ($\eta = r/L$)
- Local height probabilities as multiple sums of ratios of determinants (a priori more complicated structure than in XXZ)
- Second part: Damien's talk tomorrow

通 と く ヨ と く ヨ と

To be continued...

• Synopsis of the second part (Damien's talk tomorrow)

→ computation of several physical quantities for the cyclic SOS model at the thermodynamic limit ($\eta = r/L$, $N \rightarrow \infty$, L remains finite)

- $\star\,$ description of the 2(L-r) degenerated ground states at the thermodynamic limit
- ★ thermodynamic limit of the σ^z form factor
 → computation of spontaneous staggered polarizations (proof of a conjecture of Date et al.)
- $\star\,$ one-point local height probabilities at the thermodynamic limit $\rightsquigarrow\,$ coincides with results of Pearce and Seaton
- ★ multi-point local height probabilities for CSOS model at the thermodynamic limit → multiple integral representation:

$$\mathbf{P}_{\alpha_{1},...,\alpha_{m}}(s) = \prod_{j=1}^{m} \left(\int_{\mathcal{C}_{j}} dz_{j} \right) \underbrace{\underbrace{\mathcal{G}_{\alpha_{1},...,\alpha_{m}}(\mathbf{s}; \{z\}, \{\xi\})}_{\text{algebraic part}} \times \underbrace{\overline{\mathcal{S}}_{m}(\{z\}; \{\xi\})}_{\text{determinant contribution}} \cdot \underbrace{\overline{\mathbf{P}}(s, |z| - |\xi|)}_{\text{deformed 1-point LHP}},$$

Do not miss Damien's talk tomorrow!

Correlation functions of the SOS model from ABA - Dijon 2013